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Abstract—Smart grid solutions with enabling technologies such
as energy management systems (EMSs) and smart meters pro-
mote the vision of smart households, which also allows for active
demand side in the residential sector. These technologies enable
the control of residential consumption, local small-scale gener-
ation, and energy storage systems to respond to time-varying
prices. However, shifting loads simultaneously to lower price peri-
ods is likely to put extra stress on distribution system assets such
as distribution transformers. Especially, additional new types
of loads/appliances such as electric vehicles (EVs) can intro-
duce even more burden on the operation of these assets, which
is an issue that needs special attention. Such extra stress can
cause accelerated aging of distribution system assets and sig-
nificantly affect the reliability of the system. In this paper, the
impact of a smart neighborhood load on distribution transformer
aging is investigated. The EMS of each household is designed to
respond to prices and other signals emitted by the responsive
load serving entity within the relevant demand response strat-
egy. An optimization framework based on mixed-integer linear
programming is presented in order to define the EMS struc-
ture. Then, the equivalent aging of the distribution transformer
is examined with a thermal model under different scenarios.
The case studies that are presented indicate that the integra-
tion of EVs in residential premises may indeed cause accelerated
aging of the distribution transformers, while the need to inves-
tigate the efficiency of dynamic pricing mechanisms is rendered
evident.
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NOMENCLATURE

Abbreviations

DR demand response.
DS distribution system.
EMS energy management system.
ESS energy storage system.
ESS2H energy storage system-to-home.
EV electric vehicle.
MILP mixed-integer linear programming.
PV photovoltaic.
PV2H photovoltaic-to-home.
V2H vehicle-to-home.
V2G vehicle-to-grid.

Indices

h smart household index.
t period of the day index in time units [h].

Variables

Costh total electrical consumption cost for each smart
household of the neighborhood.

K load factor (load current/rated current).
Pgrid

h,t power drawn from the grid by each house-
hold [kW].

PPV,used
h,t PV power used by the household [kW].

PEV,used
h,t power of EV battery used by the house-

hold [kW].
PESS,used

h,t power of ESS used by the household [kW].

PEV,ch
h,t charging power of EV [kW].

PESS,ch
h,t charging power of ESS [kW].

V relative aging rate.
Vn relative aging rate during interval n.
θh winding hottest-spot temperature [◦C].
θo top-oil temperature [◦C].
�θo,i top-oil (in tank) temperature rise at start [◦K].
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Parameters

gr average winding to average oil (in tank) temper-
ature gradient at rated current [◦K].

H hot-spot factor.
k11 thermal model constant.
k21 thermal model constant.
k22 thermal model constant.
N total number of time intervals.
Pin

h,t inelastic electrical load for each household [kW].
Pr distribution transformer rated power [kW].
R ratio of load loss to no-load loss at rated current.
θa the ambient temperature [◦C].
x exponential power of total losses versus top-oil

(in tank) temperature rise (oil exponent).
y exponential power of current versus winding

temperature rise (winding exponent).
�θo,r top-oil temperature rise at rated current [◦K].
�θh,i hot-spot-to-top-oil (in tank) gradient at

start [◦K].
�θh,r hot–spot temperature rise at rated current [◦K].
λ

buy
t buying price of electrical energy from grid

[cents/kWh].
τo average oil time constant.
τw winding time constant.

I. INTRODUCTION

D ISTRIBUTION system (DS), that serves as the bridge
between transmission system and end-user premises for

electric energy transfer, is considered as one of the most impor-
tant points of a power system for the effective and efficient
utilization of electricity. With the introduction of different
kinds of electric loads on the market, the load shapes of end-
user premises have started to change significantly, a fact that
may lead to compelling circumstances for DS assets such as
transformers, lines, etc.

As a new type of end-user appliance/load, electric vehi-
cles (EVs) have recently gained more importance as the
electrification of the transport sector, which traditionally is
a major fossil fuel consumer, is promoted [1]. EVs differ
from the traditional loads, in the sense that they may both
consume and provide energy, posing challenges and offering
opportunities that should be examined in detail [2], [3]. On
the one hand, from the perspective of a load, the energy needs
of EVs can reach the levels of new power plant installation
requirements. For example, the recommended charging level
of a Chevy Volt, a small sized EV, is 3.3 kW, which can even
exceed the total installed power of many individual homes
in an insular area [4]. On the other hand, EVs can also be
employed as a system resource, especially during peak periods
through the vehicle-to-home (V2H) and vehicle-to-grid (V2G)
options [5], [6].

Apart from EVs, non-dispatchable distributed generation
technologies such as photovoltaic systems (PV) and wind
energy conversion systems increase the uncertainty in the daily
operation of the DS.

Herein, transformers, considered as core elements of DS, are
given specific importance in industrial applications in order

to increase the reliability of DS operation under high pene-
tration levels of the aforementioned technologies in the DS.
Transformers are significantly affected by operating conditions
such as heavy loading and therefore it is important to evaluate
the effects of possible extra loads that can have such impacts
on transformer units. The transformer operating lifetime is
normally declared by manufacturers under normal operating
conditions. However, operating conditions beyond the nominal
are likely to cause a decrement in the effective operating life-
time of a transformer unit, especially due to increased thermal
load causing insulation aging (which depends on winding tem-
perature). Thus, it is important to maintain the transformer’s
operating conditions within certain limits to ensure longer
operation of this pivotal asset of DS. With this aim, “smart
grid” solutions that are recently gaining increasing impor-
tance are likely to be applied in order to prolong the effective
utilization period of such assets.

The “smart” grid has been considered to have a prominent
position within the new concepts for operating the mature elec-
tric power grid in a more efficient and reliable way, that is
also supported by high levels of investments from govern-
ments of both developed and developing countries. Within the
smart grid concept, smart home structures together with smart
home energy management systems (EMS) capable of control-
ling home size distributed energy production facilities, EV
based storage/production options, and controllable new gen-
eration smart appliances have also been the specific topic of
some research activities in the area of residential demand-side
management [7]–[13].

Specifically considering smart solutions in the DS areas
for the effective utilization of transformers, the impact of
EV charging on the distribution transformers was studied
in [14]. Randomized plug-in time, random departure time,
and battery charging characteristics as well as the control
and optimization of the EV charging were neglected and pre-
sented as the aim of future studies in [14]. Besides, [14] solely
considered the impacts of EVs under several scenarios with-
out taking into account any other end-user characteristics.
Moreover, [14] neglected the V2G possibility that can raise
issues in terms of the magnitude and the duration of trans-
former overloading. As an extension of the study presented
in [14], Vicini et al. [15] also considered the coordination of
EV charging activities within a neighborhood via home EMS,
considering incentive based demand response (DR). However,
in [15] no issue related to the minimization of individual home
owner daily electric energy costs was taken into account.
Besides, in [15] the V2G possibility is neglected. A method
for describing the EV charging effects on overhead distribution
transformers and a method for mitigating this impact through
a transformer temperature-based smart charging algorithm pro-
vided to reduce transformer overloading was proposed in [16].
However, this study neglected the individual home owner cost
minimization. There are also other studies, not mentioned here,
that have provided important insights on the area. However,
none of them considered the impact of a time-varying DR
scheme on the aging of a distribution transformer serving
a residential neighborhood. Such considerations are impor-
tant in order to investigate potential tradeoffs between the
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Fig. 1. Schematic diagram of a transformer serving a neighborhood composed
of 4 smart households.

benefits that emerge from rendering available dynamic tariffs
to residential end-users and the inefficient utilization of the
DS infrastructure.

In this study, the impact of the operation of a neighbor-
hood of smart households contracted under a time-varying
pricing scheme on the local distribution transformer aging is
studied, which has not yet been considered in the relevant lit-
erature. The investigation of this issue constitutes the major
contribution of the paper.

Furthermore, the effect of the possibility of EVs to cover
a portion of the household load through V2H mode is analyzed
as well. The aim of the numerical simulations is to demonstrate
that the integration of EVs may indeed accelerate the aging of
the distribution transformers and to investigate the efficiency
of the dynamic pricing scheme.

The remainder of the paper is organized as follows: in
Section II the proposed methodology is developed. Then, in
Section III a realistic test case is presented and the obtained
results are thoroughly discussed. Finally, conclusions are
drawn in Section IV.

II. METHODOLOGY

The schematic diagram of a transformer serving a neigh-
borhood composed of multiple smart households is depicted
in Fig. 1.

A. Minimization of the Cost of Each Individual Household

The equations concerning the smart-household appliances
are given below as part of the model of optimizing the cost
for electricity usage for each smart household.

The objective of each household h is to minimize the cost
of buying energy from the grid. This is expressed by (1).

h ∈ H: Minimize Costh =
∑

t

(
Pgrid

h,t ·ΔT · λbuy
t

)
(1)

Algorithm 1 Cost Minimization for All the Households of the
Neighborhood

1: h← 1

2: PTR
t ← 0

3: for h = 1:card(H)

Minimize (1)

subject to (2)-(3)

PTR
t ← PTR

t + Pgrid
h,t

end

4: The power that the transformer has to serve is known (PTR,pro
t )

together with the individual cost and appliance scheduling of
each household.

In (1), Pgrid
h,t is the power drawn from the grid (kW) from

household h in period t, ΔT is the duration of the optimiza-
tion interval (h) and λ

buy
t (C/kWh) is the hourly varying price

signal. The electricity price is assumed to be the same for all
the houses fed by the transformer.

The power balance for each household is:

h ∈ H: Pgrid
h,t + PPV,used

h,t + PEV,used
h,t + PESS,used

h,t

= Pin
h,t + PEV,ch

h,t + PESS,ch
h,t , ∀t (2)

The amount of energy consumed to cover the needs of each
smart household includes the inelastic load used by all the
appliances of the house (Pin

h,t), the charging needs of the ESS of

the household (PESS,ch
h,t ) and also the charging needs of the EV

battery (PEV,ch
h,t ). This total amount of electricity consumption

is covered, for each household, either by power drawn from
the grid through the distribution transformer (Pgrid

h,t ), or by the

power produced by the PV installation (PPV,used
h,t ), or the power

stored in the ESS (PESS,used
h,t ) and the EV (PEV,used

h,t ).
The EV and ESS modeling includes the equations and con-

straints which have been presented and explained in detail
in [4] and [17]. These constraints are represented by the gen-
eral expression (3) in which xh is the vector of the decision
variables pertaining the constraints of each household h, while
Sh is the set of feasible solutions.

h ∈ H: xh ∈ Sh ∀t (3)

The optimization of the smart household is performed
through Algorithm 1.

The EMS of each smart household solves its own appli-
ance scheduling problem in a decentralized fashion. Then, the
transformer monitoring unit receives the information regard-
ing the request of power by the neighborhood and calculates
the equivalent aging.

B. Transformer Aging Effect Modeling

1) Loss of Life Calculations: A proper preservation of
mineral-oil-tilled distribution transformers is of a key impor-
tance in power systems, and therefore, there is the need
to adopt a caring approach concerning transformer loading,
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in order to benefit as much as possible from their availability
and life service.

The insulation of a power transformer is essentially made
of paper and oil which suffers from aging. Unexpected rise
of the load results in a rise in the hot-spot temperature and
subsequently affects the thermal decomposition of [18]–[20].

Since the temperature distribution is not uniform, the hottest
section of the transformer will consequently be the most dam-
aged. Thus, the hot-spot temperature directly affects the life
duration of transformers [21], [22].

The rate at which the aging of paper insulation for a hot-
spot temperature is increased or decreased compared to the
aging rate at a reference hotspot temperature [18] is the rel-
ative aging rate V , which is the rate at 110 ◦C according
to [19].

The relative aging rate for the thermally upgraded paper, that
is chemically modified to improve the stability of the cellulose
structure, is above one for hot-spot temperatures greater than
110 ◦C and means that the insulation ages many times faster
compared to the aging rate at a reference hotspot temperature,
while it is lower than one for hot-spot temperatures less than
110 ◦C [16]. For thermally upgraded paper the relative aging
rate V is given by (4) [19].

V = e

(
15000

110+273− 15000
θh+273

)

(4)

Over a certain period of time, the loss of life L is calculated
using (5).

L =
∫ t2

t1
Vdt or L ≈

N∑

n=1

Vn × tn (5)

2) Hot-Spot Temperature in Transient Conditions: The key
idea behind the top-oil temperature rise model is that an
increase in the losses is a result of an increase in the loading
of the transformer and subsequently the global temperature of
the transformer.

The temperature fluctuations are dependent on the over-
all thermal time constant of the transformer, which in turn
depends on the rate of heat transfer to the environment and
the thermal capacity of the transformer.

In steady state, the total transformer losses are proportional
to the top-oil temperature rise. In transient conditions, the hot-
spot temperature is described as a function of time, for varying
load current and ambient temperature [18].

The temperature rise of the oil may be modeled as a capac-
itance in the RC circuit, so that the heat transfer equations are
expressed as exponential functions, taking into account the
charge and discharge of an equivalent RC circuit.

For an increasing step of loads, the top-oil and winding
hot-spot temperatures rise to a level corresponding to a load
factor of K. In this case, the top-oil temperature is defined
by (6) and (7).

θo(t) = �θo,i +
{
�θo,r ×

[
1+ R× K2

1+ R

]x

−�θo,i

}

×
(

1− e−t/(k11×τo)
)

(6)

TABLE I
TRANSFORMER PARAMETERS

�θh(t) = �θh,i +
{
H × gr × Ky −�θh,i

}

×
[
k21 ×

(
1− e−t/(k22×τw)

)
− (k21 − 1)

×
(

1− e−(t×k22)/τo

)]
(7)

For a decreasing step of loads, the top-oil and winding
hot-spot temperatures decrease to a level corresponding to
a load factor of K [18]. In this case, the top-oil temperature
is calculated by (8) and (9).

θo(t) = �θo,r ×
[

1+ R× K2

1+ R

]x

+
{
�θo,i −�θo,r ×

[
1+ R× K2

1+ R

]x
}

×
(

e−t/(k11×τo)
)

(8)

�θh(t) = H × gr × Ky (9)

In conclusion, with θo(t) and �θh(t) obtained
using (6) and (7) for increasing load steps, or (8) and (9)
for decreasing load steps, the overall hot-spot temperature
equation is (10).

θh(t) = θa + θo(t)+�θh(t) (10)

III. TESTS AND RESULTS

A. Input Data

The mathematical model of the smart households described
above has been implemented in GAMS v.24.1.3. and was
solved using the commercial solver CPLEX v.12. The utilized
optimization interval is 4 minutes (0.066h) and as a result there
are 360 periods. The transformer aging has been calculated fol-
lowing the procedure suggested in the IEC 60076-7 standard
and the relevant code has been developed using MATLAB.

To demonstrate the proposed methodology, a sample
neighborhood consisting of 4 houses that are supplied by
a 25kVA single phase pole mounted transformer as a local
part of the distribution system is considered the parameters of
which are presented in Table I [23]. It should be noted that
the distribution system can use medium or low voltage regard-
ing the consumer type and system configuration. There are
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TABLE II
HOUSEHOLD APPLIANCES DATA

Fig. 2. Inelastic load of the neighborhood.

also international and regional differences as regards system
configurations used for power distribution. The structure in
Fig. 1 considers a split phase low voltage distribution system
which is typical in the U.S., Japan, Canada, etc. [24], [25].

The houses are assumed to host different kinds of consumers
with different load profiles. These load profiles are created
considering several typical domestic appliances the nominal
power of which is presented in Table II [26].

The total inelastic load profile of the neighborhood is por-
trayed in Fig. 2. Furthermore, each household has a battery
based ESS and a rooftop PV installation. Since the households
are considered to be close to each other, a PV power curve
normalized per 1kW of installed capacity, is used for all the
houses, measured in the smart household prototype in Yildiz
Technical University, during the summer of 2013, assuming
random small deviations that could be possibly caused by dif-
ferences in the efficiency of the PV systems, for example, due
to dirty PV panel surfaces etc.

The PV production for the 4 households is presented in
Fig. 3. Also, the recorded temperature for this day is portrayed
in Fig. 4.

There are already different types of EVs available on the
market. Eight different EVs are considered in this study and

Fig. 3. PV power production of the households.

Fig. 4. Ambient Temperature.

TABLE III
EV PARAMETERS

TABLE IV
CASE STUDIES

the relevant EV data are provided in Table III. Besides, three
different cases are evaluated with respect to different EV type
ownership for each household as presented in Table IV.

Data concerning the EV, the PV and the ESS of each
household are presented in Table V. These assets may be
also used to partly or fully cover household energy needs
through V2H, energy storage system to home (ESS2H) and
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TABLE V
ASSET DATA OF EACH HOUSEHOLD

Fig. 5. Hourly energy price signal.

PV to home (PV2H) options. The retailer announces a price
signal for the 24h of the optimization horizon as displayed
in Fig. 5.

B. Simulation and Results

As mentioned before, in order to evaluate the impacts of
incentive-based DR activities on transformer loading, three test
cases considering different EV types are presented.

It is to be noted that another issue related to EVs that can be
considered in the mentioned case studies, is the time and loca-
tion based uncertainty of EV integration to DS, which is likely
to pose a considerable challenge to the distribution system
operator in the future together with the expected increase in
EV penetration [27]. However, this study follows a determin-
istic framework in which the impacts of EV based uncertainty
are not considered.

Case 1 does not consider EV availability and the relevant
results are depicted in Fig. 6. As it can be observed, no over-
loading occurs as no extra EV charging load exists. The PV
and ESS partly cover the inelastic load of each household. As
a result, a reduction in the transformer loading is noticed espe-
cially from 9 am to 5 pm during which the electricity prices
are relatively high. Furthermore, before 9 am, the ESSs of the

Fig. 6. Total transformer load for Case 1.

Fig. 7. Total transformer load for Case 2.

households are charging in order to be able to provide this
power later, causing a peak to the transformer loading.

In Case 2 each household is considered to possess a rel-
atively small-sized EV. The relevant results are depicted in
Fig. 7. Evidently, an excessive transformer loading occurs,
reaching nearly 110% for several late-night periods, especially
during the lowest price hours, even if the EV capacities are
relatively low in this test case. Another point to be observed is
that the inelastic load is partially covered by the V2H option
of EVs during the periods after the arrival time of the EVs
because of the higher prices the hold during these periods in
comparison with the prices in later periods.

Case 3 results in the transformer loading shown in Fig. 8.
This test case is relatively worse in terms of EV capacities
that have the capability of being charged with greater power
levels than the EVs considered in Case 2.

However, the greater the EV capacity is, the greater the
opportunity of covering a more significant portion of the
household power requirements by V2H option. This results in
lower total transformer loading, especially in higher price peri-
ods during which using available EV energy to partly cover
the household load and charge later is more profitable than
procuring power from the grid. As expected, the capability
of greater charging power levels leads to transformer over-
loading with longer duration and significantly higher levels
(exceeding 160%) in comparison with Case 2. This is likely
to accelerate the transformer unit aging, a fact that should be
examined further with the analysis of the transformer hot-spot
temperature.
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Fig. 8. Total transformer load for Case 3.

Fig. 9. Transformer hot-spot temperature for Case 1.

Fig. 10. Transformer hot-spot temperature for Case 2.

In this regard, the hot-spot temperature of the transformer
for the three test cases is presented in Figs. 9–11, respectively.
Case 1 results in acceptable levels of temperature increase in
the transformer unit while Case 2 and Case 3 boost the temper-
ature variations due to the increasing requirement of charging
power levels, especially due to the choice of EMS to charge the
EV batteries after midnight due to the relatively lower prices
during these periods. Even if each household owner benefits
from such actions of their EMS in terms of total cost, the dis-
tribution transformer faces increasing stress that is very likely
to cause more rapid aging of the insulation.

Table VI presents the relevant equivalent aging for each
test case. As expected, excessive power drawn from the grid
through the transformer unit results in a significant increase in

Fig. 11. Transformer hot-spot temperature for Case 3.

TABLE VI
AGING RESULTS

transformer aging in Case 3 in comparison with Cases 1 and 2.
It may be also observed that the increase in EV capacities
results in an undesired decrease in transformer lifetime that is
a main concern for the DS Operators, although it guarantees
that EVs can cover longer travelling distances and as a result
may promote the electrification of personal transport and the
smart grid enabling technologies in general.

As a different analysis, the previous case studies are re-
evaluated by considering that the V2H option of the EVs is
not available. Normally, the availability of the V2H option
allows for higher flexibility for the EMS of the end-user that
may also decide to cover a part of the household load require-
ments from the EV, when the price of procuring power from
the grid is high. However, this will in turn result in greater
energy requirements to fully charge the EV battery in order to
satisfy the comfort conditions of the EV owner, which means
a greater peak in the total load of the transformer when the
power procurement costs are lower, typically after midnight.
Thus, the utilization of the V2H option is very likely to have
a more adverse effect on the loading and the thermal stress of
the distribution transformer.

The results regarding the total transformer load and the
transformer hot-spot temperature considering that V2H option
is not available are presented in Figs. 12 and 13 for
Cases 2 and 3, respectively. As Case 1 does not consider
EV availability, the results that were previously depicted in
Figs. 6 and 9 do not change and thus are not repeated. It can
be seen from the total transformer load for both cases that the
observed power peaks are considerably lower and with shorter
duration. This is caused by the fact that since no discharge is
possible when the EV is at home, less amount of energy is
required to charge the EV batteries.

The impact on reduction of power peaks also results in
less increase in transformer hot-spot temperature as it can be
observed in Fig. 13. Thus, a significant reduction in the aging
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Fig. 12. Total transformer load for Cases 2 and 3 without V2H option.

Fig. 13. Transformer hot-spot temperature for Cases 2 and 3 without V2H
option.

TABLE VII
ENERGY PROCUREMENT COST OF DIFFERENT HOUSEHOLDS

of the transformer is observed as it can be seen in Table VI
for both the Cases 2 and 3 when the V2H option is not avail-
able. In fact, no aging acceleration is noticed and therefore,
the observed overloading may be considered acceptable.

Furthermore, the total energy procurement cost considering
the availability of the V2H option is compared with the cor-
responding costs for the case in which the V2H option is not
available and the relevant results are presented in Table VII.
End-users benefit from the V2H option due to the possibility
of utilizing the energy stored in the EV to cover portion of
the household load during higher price periods.

This comparison indicates that even if the home owners can
benefit from the V2H option and increased levels of smart
grid enabling technologies, the DS may encounter detrimental
results in terms of facing extra stress and aging of assets,
etc., which clearly depicts that the deployment of such new
technologies in power system should be carefully planned in
order to balance the benefits for both end-users and energy
suppliers.

C. On the Efficiency of the Pricing Mechanism

In the pricing mechanism adopted in this study, it is con-
sidered that the price of electricity is different during each

hour of the day and is known to the consumer before the
actual day in which the consumption takes place. Through
dynamic pricing consumers are directly exposed to the vari-
ability of the cost in the wholesale day-ahead energy market.
Currently, two noticeable dynamic pricing programs engaging
residential end-users exist in the U.S., one by Pennsylvania
New Jersey Maryland Interconnection (PJM) [28] and one by
the Midcontinent ISO (MISO) [29]. In both programs the day-
ahead market prices are known to the consumer one day before
the actual power delivery; however, the way in which they
actually price the consumers differs. In the program offered
by PJM, the end-users are priced according to the real-time
prices that are settled in the end of each hour in the actual dis-
patch day and are calculated by averaging the 5-minute prices
of that hour, while in the program offered by MISO consumers
are priced according to the day-ahead prices. In this paper, the
pricing mechanism that is used is similar to the relevant MISO
program.

Although dynamic pricing (e.g., real-time pricing) is gener-
ally considered to reflect the very short term cost of electricity,
the efficiency of this pricing mechanism is often questioned
mainly due to two reasons [30]: 1) residential end-users (that
are the primary target group of such programs) do not nec-
essarily follow a rational economical model as regards that
consumption of electricity, i.e., a consumer may still be will-
ing to consume electricity at peak hours, and 2) the asymmetry
between the communication of the prices and the response of
the end-user.

Evidently, the very short term costs of electricity are bet-
ter captured by programs that price the end-user based on
the prices produced by real-time markets that are cleared on
a very short term basis (e.g., several minutes) rather than
by those that price the end user according to the day-ahead
market prices; This is the reason why the energy prices in
this study, that follow the latter mechanism, do not reflect
the power consumption peaks in the early morning hours
due to the EV charging; however, the first type of dynamic
pricing programs present the disadvantage of exposing con-
sumers to uncertainty, since the electricity price is settled after
the consumption interval. As a result, this type of programs
may compromise the incentives provided to the consumers in
order to motivate them to enroll, since the rationale behind
dynamic pricing is that consumers would exercise price arbi-
trage, which in turn depends on the differences of the prices
within the day, which in this case would not be known a pri-
ori. In such cases, uncertainty management techniques would
be necessary in order to predict the electricity prices, which
may not be justifiable for residential consumers, in terms
of complexity and computational burden, because the wel-
fare gain of their participation in dynamic pricing schemes is
little.

In order to confront the deficiencies of the pricing mecha-
nism the following are suggested:

1) Development of advanced models that predict the
response of the end-users based on exogenous fac-
tors such as the weather and the time delay between
the communication of the energy prices and the actual
response [30].
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TABLE VIII
COMPUTATIONAL STATISTICS

2) Development of residential consumption coordi-
nation strategies that consider distribution system
constraints [17], [31] or the interaction of the trans-
former management unit and the EMS [32] together
with dynamic pricing mechanisms.

D. Computational Statistics

The computational statistics of each optimization sub-
problem are provided in Table VIII. The total solution time,
considering an optimality gap of 0%, is 1 sec on a modern
laptop computer (i7 at 2.4GHz, 4GB RAM, 64bit Windows).

Note that the separable form of Algorithm 1 allows for dis-
tributed computing techniques to be applied and as a result
the privacy of the end-users is preserved.

As the computational capabilities of embedded systems
that are needed to implement EMS and monitoring systems
increase, it appears that such complex algorithms will be
practically applicable even for large scale systems.

IV. CONCLUSION

In this study, an analysis of the impacts of price-incentive
based DR on a neighborhood distribution transformer aging
has been performed. A MILP model of a neighborhood com-
posed of smart households with different end-user profiles
was developed. The availability of a distributed generation
unit, an ESS, and an EV considering also PV2H, ESS2H
and V2H capabilities has been modeled. Furthermore, a ther-
mal model of the transformer unit serving this neighborhood
for transformer aging evaluation has been provided based on
existing standards. The main contribution of the study was
to combine the impacts of price-responsive residential end-
users based DR schemes and relevant impacts on transformer
aging for different case studies based on different capacities of
EVs. The availability of V2H option has also been discussed
in the comparative analysis. The obtained results for differ-
ent case studies demonstrated the significant adverse effects
of extra EV loads combined with price-based DR activities,
which strive to shift as much load as possible to low-price
hours. The aging of the transformer has shown a tremendous
increase with the increase in the capacity of the EV. Besides,
the negative impacts of V2H option on the transformer unit
extra loading and the relevant increase in aging have also been
comparatively demonstrated. Yet, V2H option availability pro-
vided more flexibility for EMS of each household to lower
total prices by covering some portion of the household load
from EVs. It can be concluded that while greater EV capacities
and the availability of V2H option allowed residential end-user
EMS to benefit more from price-incentive based DR schemes,
these options may adversely affect DS reliability by stress-
ing more DS assets. Thus, DR schemes can also be examined
from such a perspective, that is, from DS Operator point of

view. As a future study, the authors aim to provide a two-side
optimization approach to investigate the appropriate balance
between end-user benefits and DS operational considerations.
Besides, the implementation of the proposed structure to study
a greater part of the distribution system composed of multiple
neighborhoods and also considering the aging effect of load-
ing on other distribution system assets will be the topic of
a future study.
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