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Abstract—In deregulated electricity markets, producers offer
their energy to the day-ahead market. As the subsidies for renew-
able producers are becoming lower and lower, they have to adapt
to market prices. This paper models the energy trading in the
day-ahead market for wind power producers. Different strategies
are proposed for this purpose: 1) several wind farms offering their
energy separately to the day-ahead market; 2) the same strategy
as in 1) but compensating the imbalance among different wind
farms; and 3) a joint offer involving several wind farms through
an external agent in order to minimize the imbalances between
the offer and the final power generation. The strategies are
modeled with stochastic mixed integer linear programming and
Conditional Value at Risk is used to consider the risk assessment.
The expected profit including risk aversion is maximized for each
wind power producer and for the set of wind power producers
in the case of a joint offer. A comparison of the different cases is
described in detail in a case study and relevant conclusions are
provided.
Index Terms—Conditional Value at Risk (CVaR), day-ahead

market, energy trading, external agent, imbalances, stochastic
mixed integer linear programming, wind power.

NOMENCLATURE

A. Indices and Numbers

Index of time periods from 1 to .

Index of scenarios from 1 to .

Index of wind farms from 1 to .
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B. Parameters

Per unit confidence level.

Capacity of wind farm [MW].

Risk aversion of the wind power producers.

Wind farm operation cost [euros/MWh].

Power produced by wind farm in period and
scenario [MW].

Day-ahead market price in period and scenario
[euros/MWh].

/ Downward/upward energy prices resulting from
the balancing market in period and scenario
[euros/MWh].

Positive/negative imbalance market prices in
period and scenario [euros/MWh].

Probability of occurrence of scenario of wind
farm .

Set of probabilities of wind farm .

C. Variables

Power offer to the day-ahead market associated
to wind farm in period [MW].

Conditional value at risk of wind farm [euros].

Imbalance between the actual wind production
and the power offer associated to wind farm in
period and scenario [MW].

Negative imbalance between the actual wind
production and the power offer associated to
wind farm in period and scenario [MW].

Positive imbalance between the actual wind
production and the power offer associated to
wind farm in period and scenario [MW].

Total expected profit of wind farm [euros].

Expected profit of wind farm in period and
scenario [euros].

Mean expected profit of wind farm in period
[euros].
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Total expected revenue of wind farm from
selling energy in the day-ahead market [euros].

Expected revenue of wind farm from selling
energy in the day-ahead market in period and
scenario [euros].

Auxiliary variable of wind farm in scenario
used to compute CVaR [euros].

Value at risk of wind farm [euros].

Profit standard deviation in period [euros].

D. Binary Variables

0/1 variable that is equal to 1 if the imbalance in
period , wind farm and scenario is negative,
and 0 otherwise.

In the rest of the document, those parameters and variables
that do not depend on the wind farm do not have the subscript
. This is the case of the joint offer, which will be explained
in Section II-B. Additionally, when referring to the sum of the
variables of all wind farms, the subscript does not appear.

I. INTRODUCTION

W IND power penetration in electric power systems has
experienced a large increase in the last years [1]. In the

case of the Spanish electricity system, at the end of 2013 the
installed wind power accounted for more than 20% of the total
installed capacity. Also, more than 20% of the total annual elec-
tric energy was produced by wind farms [2].
In most European deregulated electricity markets, producers

have to send their energy offers to the day-ahead market for the
next day. Those energy quantities that have been selected are
paid at the marginal market price obtained for each hour. The
majority of day-ahead electricity markets are adapted to con-
ventional generation, such as thermal units, and the time span
between the market closure and the delivery hour can be up to
38 h (Spain). In the case of wind producers, due to the wind un-
certainty and the long time span, the generation is different from
the schedule, incurring in an imbalance.
Energy trading firms are becoming important participants in

the energy markets of many countries. The rules of the liber-
alized Iberian electricity market allow non-dispatchable or re-
newable generators (special regime) to compensate their imbal-
ances by making a joint offer to the day-ahead market through
an external agent [3]. Some wind farms in different network
locations can compensate their imbalances and, thus, increase
their profits. However, in our paper, several models based on
different strategies for trading energy for a set of wind farms to
the day-ahead market are presented. The main purpose of this
paper is not the minimization of imbalances, but the maximiza-
tion of the wind power producers profits.
In previous research, the optimal coordination between

pumped-storage units and wind farms in electricity markets has
been studied [4]–[6], with the result that, when maximizing the

coordinated profit, the total imbalance decreases. Stochastic
models for optimal offering strategies for a wind power pro-
ducer to a short-term electricity market have also been studied
[7]–[10].
In [7], a statistical method is used for modeling wind be-

havior. The paper is focused on determining the amount of en-
ergy sold in a short-term electricity market. Several policies for
wind energy are described and evaluated under different imbal-
ance price assumptions. It is assumed that the energy will be
sold in a short-term electricity market at a fixed price with fixed
volume blocks. The energy output of the wind farm is normal-
ized by its rated energy output and divided into energy bands.
Each band has a different Markov probability. Risk aversion is
considered for the cases where a very unfavorable event is likely
to occur.
Authors in [8] address the same problem as in [7] through

a stochastic optimization model using mixed-integer program-
ming. With this method, it is possible to compute a higher
amount of wind power and price scenarios than in previous
works. The method uses statistical data about the forecast error.
In [9], historical uncertainty information is taken into account
to improve the value of wind power forecasts. Mathematical
improvements to the model in [8] are incorporated in [10]. Risk
management is taken into account and an adjustment market
is proposed in order to minimize the imbalances considering
certainty gain. A realistic case study, based on a wind farm in
Portugal is carried out in [11] considering risk management. An
adjustment market for minimizing imbalances is also proposed
in [12]. Apart from introducing an adjustment market, there are
other ways of minimizing imbalances, such as combining wind
power with energy storage [13]–[15] or combining wind and
hydro power generation, as in [5], [16], [17].
The contributions of this paper are stated below:
1) A stochastic linear programming model to trade energy to

day-ahead electricity markets with a balancing mechanism
for wind power producers is presented;

2) The model in 1) is available for electricity markets with
energy prices equal to zero, which is the case of the systems
with high renewable power penetration;

3) Consideration of risk through the CVaR methodology to
obtain the maximum profit by limiting the scenarios with
the worst profits;

4) A mechanism for making an optimal joint offer to the day-
aheadmarket for a group of wind farms through an external
agent is presented;

5) A detailed analysis of a case study in Spain comparing
different mechanism for trading energy in the day-ahead
market clustering several wind farms.

The remainder of this paper is organized as follows. In
Section II, the mathematical formulation of the problem is
presented. This section also provides a brief overview of
the balancing market framework and the description of the
different mechanisms for day-ahead market trading. Scenario
generation and scenario reduction are explained in Section II.
In Section III, a case study is described and the results are dis-
cussed. In Section IV, some relevant conclusions are provided.
The model used for the wind speed forecast is explained in the
Appendix.
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II. PROBLEM DESCRIPTION

A. Balancing Market Framework
In European pool-based electricity markets, there are dif-

ferent types of short-term markets, depending on the time
frame: the day-ahead market, the intra-day or adjustment
market and the balancing market. In other electrical systems,
there can be different short-term electricity markets. Hereafter,
the assumptions made in this document are related to elec-
tricity markets whose electrical systems are integrated in the
ENTSO-E (European Network of Transmission System Oper-
ators for Electricity) [18]. After day-ahead market clearing, it
is possible to make corrective actions in the adjustment market
to increase the producers' revenues. For wind power producers,
the adjustment market is very important because it can update
the latest information and forecasts considering certainty gain.
If the wind power producers are not price makers, their bidding
strategies do not affect market prices.
In order to maintain the balance between generation and con-

sumption, there is a balancing market (real-time) which allows
the system to operate under normal conditions. In this market,
negative imbalance prices and positive imbalance prices are ob-
tained for negative and positive imbalances, respectively. If the
imbalance is negative (less generation than the one offered), the
producer incurs in a penalty, and has to pay the energy differ-
ence at the negative imbalance price. If the imbalance is positive
(more generation than the one offered), the producer is paid the
energy difference at the positive imbalance price.
In the present document, a single-node model is considered,

ignoring transmission constraints. Hence, all wind farms are as-
sumed to be connected to the same node, so that market prices
are the same for all the producers. In [19], it is proved that a
uniform marginal price can be used without affecting the total
economic surplus. However, this is only a simplification of the
model. According to [20], locational marginal pricing is the best
option for a market design considering congestion management.
Some countries or states split up the electric systems in small
zones with radial configuration and consider zonal prices, al-
though the definition of zones would be difficult in many Euro-
pean areas, due to the complex network topology. In [21], the
effects of congestion management are explained, formulating a
bilevel stochastic optimization model to obtain the optimal bid-
ding strategy for a wind power producer in the short-term elec-
tricity market.
When an imbalance occurs, it has to be compensated. In

Spanish electricity markets, as well as in the rest of European
electricity markets, the prices for compensating imbalances
come from the balancing market. In this market, upward prices

and downward prices are obtained. These prices
depend on the imbalance of the global electrical system. If the
imbalance of the producer goes in the opposite direction to
the imbalance of the global system (the producer imbalance
helps to compensate the global imbalance of the system), the
imbalance price is the same as the day-ahead market price.
If both, the producer and the system imbalances go in the
same direction, the imbalance price may be different from
the day-ahead market price. In any case, ( ) and
( ). Hence, the imbalances from the submitted plan

Fig. 1. Imbalance prices depending on the system needs.

are penalized, the positive imbalance price being lower than or
equal to the day-ahead market price, and the negative imbalance
price greater than or equal to the day-ahead market price (see
Fig. 1 for further explanation). The mechanism for imbalance
prices in European electricity markets is fully explained in [10].
If the system imbalance is positive (more generation than

consumption), then:

(1)
(2)

If the system imbalance is negative (more consumption than
generation), then:

(3)
(4)

B. Day-Ahead Market Offer Cases
This paper is focused on comparing the expected profit of

the daily operation of wind power producers with different offer
strategies.

i) Separate wind farm offers (SO).
ii) Separate wind farm offers with imbalance compensation

(IC).
iii) A coordinated single wind farm offer (JO).
The model proposed does not take into account the adjust-

ment market mentioned in Section II-A. Note that, as aforemen-
tioned, the main purpose of this paper is not imbalance min-
imization. This paper studies the differences between trading
energy in the day-ahead market with separate wind farm offers
or with a joint offer through an external agent. If an adjustment
market were included, the profit would probably be higher and
the imbalance lower [10]. The purpose of this paper is not to de-
termine the set of wind farms that make an optimal coalition or
to determine sharing mechanisms to allocate the profits to each
wind power producer. These topics have been studied in [22]
using coalitional game theory. In this paper, the cluster of wind
farms is provided beforehand, so the aim is to know the best
offer strategy in terms of profit for a given group of wind farms,
depending on the risk aversion of the wind producers.
1) Separate Wind Farm Offers, SO: In the SO model, each

wind farm performs its own optimization. Thus, there are as
many optimization problems as wind farms, . Each wind
farm has its own wind power scenarios. Once all the optimiza-
tions are carried out, offers, revenues, and profits are added to
obtain the total offer to the day-ahead market, as well as the total
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TABLE I
OPTIMIZATION INPUTS AND OUTPUTS

TABLE II
EXPECTED PROFIT AND VARIATION OF EXPECTED PROFIT

revenue and profit for the set of wind farms (5)–(7). The total
CVaR is also obtained as the sum of the CVaR of all wind power
producers (8). As each wind farm has to pay for its underpro-
duction and it is paid for its overproduction, negative (9) and
positive (10) imbalances are added separately in order to obtain
the total amount of each one. In Table I, it can be observed that
the total imbalance as well as the negative and
positive imbalances in each period and scenario are
available for each wind farm as output data of the optimization
models. The total standard deviation (TSD) is obtained as the
sum of the standard deviations of each wind farm (11).

(5)

(6)

(7)

(8)

(9)

(10)

(11)

2) Separate Wind Farm Offers With Imbalance Compensa-
tion, IC: In the IC model, there is an optimization for each wind
farm with the same price and wind power scenarios as in the SO
model. The optimization outputs are also the same as in the SO

model, as can be seen in Table I. The difference between both
models is that, once the optimizations for all wind farms are
done, some corrective actions are carried out.
The total offer, which is the sum of the individual offers (12),

remains the same as in the SO model and, due to this fact, the
revenue coming from selling energy in the day-ahead market is
also the same (13). Since the CVaR depends on the auxiliary
variable , it is the same for the IC and SO models for each
value of the weighting parameter (14). In the SO model, neg-
ative and positive imbalances are added separately. In the IC
model, a single global imbalance is obtained by adding all wind
farms imbalances, both positive and negative (15). The purpose
of this is that, if there are wind farms with positive and nega-
tive imbalances in a particular period and scenario , then,
they can compensate their imbalances and increase their profits,
although the global offer is the same as in the SO model. The
goal of this mechanism is to optimize its own energy offer to
the day-ahead market for each wind power producer, so that
each producer knows what its revenue is from selling the en-
ergy, although the imbalance cost is shared among all the pro-
ducers. The global imbalance per period and scenario is equal
to the summation, for all wind farms, of the difference between
the positive and the negative imbalances resulting from the op-
timization model (15). If the global imbalance is higher than or
equal to zero, then it is considered to be a positive imbalance

. On the other hand, if the global imbal-
ance is lower than zero, it is considered as a negative imbalance

. This is done through (16) and (17). The
expected profit is recalculated in (18), with all the terms known.
The TSD is computed in (19) considering the values of the ex-
pected profit coming from (18).

(12)

(13)

(14)

(15)

(16)
(17)

(18)

(19)

3) Joint Offer, JO: In the JO model, an optimal joint offer
of the group of wind farms for the day-ahead market is pro-
posed. There is a single optimization problem involving all wind
farms. Wind power scenarios are introduced as described in
Section II-C. All output data are unique, as can be observed in
Table I. The aim of this model is to maximize the total expected
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profit of all wind farms as if they were owned by a single pro-
ducer. All the results are obtained directly from one optimiza-
tion, except the TSD of the profit

(20)

Looking at equations (5)–(20), it is observable that the main dif-
ference between the aforementioned offer strategies is the way
the imbalances are treated. This difference is specially impor-
tant when comparing SO and IC models.

C. Scenario Generation

Hourly wind speed scenarios of each wind farm have been
forecasted considering one year of historical data, since March
20, 2013 to March 19, 2014. The wind speed data of the mete-
orological stations is obtained from [23], and it is adapted from
the altitudes of the meteorological stations to the altitudes of the
wind turbines by

(21)

where is the wind speed adapted to the wind farm, is the
wind speed measured at the meteorological station, is the alti-
tude of the wind turbine, is the altitude of the meteorological
station and is a parameter which value depends on weather.
The ARIMA model used for the wind forecast is explained in
the Appendix.
Once wind speed scenarios are generated, they are converted

into wind power scenarios through the turbine power curves. In
order to obtain price scenarios, historical price time series are
obtained from the Spanish transmission system operator, REE
[24]. The day-ahead market price scenarios as well as the pos-
itive and negative imbalance price scenarios correspond to the
same days.

D. Scenario Reduction

If there are price scenarios and wind power scenarios,
eachwind farm has a total of scenarios using a common sce-
nario tree. In the case of the joint offer, which involves several
wind farms, if the same scenario tree were used, there would be

scenarios, where is the number of wind farms. If the
number of wind farms is greater than 2, any number raised to the

-th power is very high. In order to solve the problem math-
ematically, a scenario reduction approach is used to reduce the
wind power scenarios [25]–[27]. The heuristic algorithm used is
the so-called backward reduction algorithm, which determines
the scenarios that have to be deleted.
Due to computational limitations, scenario reduction is done

in several steps. Firstly, the scenario reduction algorithm ex-
plained in [25]–[27] is applied, where scenarios are reduced
to scenarios for each pair of wind farms. The pairs re-
duced whose original set of scenarios and the reduced set of
scenarios are at the minimum distance (Kantorovich Distance)
are selected for the next step.

Let be the set of power scenarios of wind farm ,
the set of power scenarios of the pair of wind farms

and , and the set of reduced power scenarios of
the pair of wind farms and . According to this, the cardinali-
ties or sizes of each single (one wind farm) and combined (two
wind farms) set of scenarios are:

Stepwise Reduction Algorithm

The iterative reduction algorithm used for the reduction
of several sets of scenarios is explained next. Note that
the aforementioned algorithm only explains how to select
the set of reduced scenarios to be used in each step. The
reduction algorithm itself is the one studied in [25], [26].

Step 1

The number of pairs of wind farms is:

Then, the number of reduced set of scenarios is the integer
part of :

The selected sets of reduced scenarios are chosen based on
the minimum distance between the original sets of scenarios
and the reduced ones.

...

where , refer to wind farms and whose distance
between the original set of scenarios of the pair of wind farms
and the reduced set is the minimum of the reduced set of all
pairs of wind farms. They are called as ,
instead of , in order to avoid confusing
them with wind farm number 1, wind farm number , wind
farm number .

If is even, is an integer, and the last set of reduced
scenarios is given by:

If is odd, has a decimal part, which means that there is
one original set of scenarios that has not been reduced. This set
of scenarios is considered for the next reduction step.
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Step 2

The number of sets to be reduced is: , and
the number of reduced sets is the integer part of , where

...

If is even:

If is odd:

...

Step T

...

Step

The same procedure is carried out until only one set of
scenarios remains. This happens when the number of
steps is

At this step:

E. CVaR as a Risk Measure
Value at Risk (VaR) has been used throughout the last few

years to measure and quantify the level of financial risk within
an investment portfolio. However, VaR is difficult to optimize
when it is calculated using the scenarios approach and for distri-
butions that are not Normal. An alternative measure with better
properties is the CVaR. CVaR is strongly related to VaR but, in
the case of profits, it is lower than VaR because CVaR quanti-
fies the tail risk. From a mathematical point of view, when max-
imizing profits, CVaR is the expected value of of
the lowest profits at a given confidence interval, [28]. CVaR
can be defined as:

(22)

subject to the following constraints needed for a linear formu-
lation of the CVaR:

(23)

(24)

where is the profit of the wind farm in period and
scenario , is the VaR, is the weighting factor of CVaR,
is the confidence interval and is an auxiliary variable used
to compute CVaR. The variable is equal to zero if the profit
of wind farm in scenario is greater than VaR. If the profit in
scenario is not greater than VaR, value is the difference
between the profit of scenario and VaR.

F. Objective Function
The risk-constrained formulation of the problem is composed

of two blocks, profit and CVaR. Both blocks depend on the
weighting factor, , which models the tradeoff between the ex-
pected profit and the CVaR. As increases, the producer be-
comes more risk averse. In this formulation, . The ob-
jective function maximizes the sum of the expected profit and
the CVaR. For all day-ahead market offer cases, the price sce-
narios, the confidence interval, , and the weighting parameter
of the CVaR, , are the same in such a way that all cases can
be compared with the same price conditions. In Table I, the in-
puts and outputs of the optimization problems are shown for
each case. Note that the mathematical model is the same for all
cases. The difference resides in the input data in each case. For
the joint offer case, only one optimization is done, while for SO
and IC cases one optimization is necessary for each wind farm.

(25)

(26)
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The expected profit of the wind power producer is calcu-
lated as the difference between the revenues and the operation
costs plus the penalties. The revenues are the energy sold in the
day-ahead market, paid at the day-ahead market price, plus the
positive imbalance, paid at the positive imbalance price. The
negative imbalance, paid at the negative imbalance price, is con-
sidered as a penalty. Note that the expected energy sold in the
day-ahead market, , does not depend on the scenarios. The
operational costs of the wind farm are taken from [29]. Thus,
(23) becomes:

(27)

G. Constraints
The following constraints are needed for the problem

resolution:

(28)
(29)
(30)
(31)
(32)

The maximum power offer to the day-ahead market has to
be lower than the capacity of the wind farm (28). The imbal-
ance is defined as the difference between the final generation
of the wind farm and the energy scheduled (29), and is decom-
posed into the sum of a positive and a negative imbalance (30).
In order to force that positive and negative imbalances cannot
exist simultaneously, a binary variable is used, , as in [8].
The imbalances, both positive and negative, have to be lower
than the maximum capacity of the wind farm, (31) and (32).
In several previous formulations, the use of was not nec-
essary [10]–[12] because the optimal solution was guaranteed
if one of the variables, or , was equal to zero. For this
purpose, the imbalance was multiplied by a ratio: the market im-
balance price divided by the day-ahead market price. As is cur-
rently common in many electricity markets, such as the Iberian
one, the day-ahead market price can be equal to zero, then, it is
not possible to get a variable in which the denominator is equal
to zero.

III. CASE STUDY
The case study is based on five wind farms. Each wind farm

has 25 turbines of 2 MW. The installed wind power capacity is
50MWper wind farm, with a total capacity for all wind farms of
250 MW. The wind farms are situated in the north of Spain. All
wind turbines are assumed to be operating in every period. The
number of scenarios for the day-ahead and balancing markets is
30 for both, taken from [24], [30]. The number of wind power
scenarios of each wind farm is 50, 1500 being the final number
of scenarios of the scenario tree for each wind farm, considering
wind power and prices. For the case of the joint offer, 200 wind
power scenarios are considered, with a final number of scenarios
of 6000. The scenario tree used is explained in Sections II-C and

Fig. 2. Wind power scenarios of each wind farm.

Fig. 3. Reduced wind power scenarios involving all wind farms.

II-D. The time frame of the case study is 24 hours divided into
hourly periods. A confidence level is used to compute
CVaR in all periods. In Fig. 2 and 3 the initial scenarios of each
wind farm and the final reduced scenarios are presented, respec-
tively.

A. Daily Expected Offer, Profit and Imbalances
The three offer mechanisms proposed in the problem descrip-

tion are compared in detail. As increases, the expected offer
decreases, the expected negative imbalance being lower and the
expected positive imbalance greater. This means that, as pro-
ducers becomemore risk averse, they prefer to trade lower quan-
tities of energy in the day-ahead market to get lower negative
imbalances and sell the rest of the generation in the balancing
market at the positive imbalance price, . The variation of the
expected offer and the expected imbalances with risk aversion
is more pronounced in the case of separate offers, SO, and in
separate offers with imbalance compensation, IC (Fig. 4). The
slope of the lines representing JO variables vs. is lower, which
means that SO and IC are more influenced by risk aversion.
The expected profit is maximum in the JO for all values.

Also, the IC expected profit is higher than the SO expected
profit. Since the energy offers to the day-ahead market are the
same in the SO and IC cases, the producers' revenues coming
from the energy sold are also equal. Thus, the differences in the
expected profits come from the payments and incomes resulting
from the clearing of the balancing market.
By looking at Fig. 4 and 5, it can be said that a negative im-

balance represents a high loss of the expected profit. As can be
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Fig. 4. Evolution of the optimal offers and expected profits with risk aversion.

Fig. 5. Evolution of the expected imbalances with risk aversion.

TABLE III
IMBALANCE PERCENTAGES FOR DIFFERENT VALUES

observed in Fig. 4 and Table III-A, as increases, the expected
profit decreases for all offer mechanisms. However, the increase
of the expected profit when comparing the JO with the other
cases, is greater for high values.
Table III presents the percentages of the expected imbalances

with respect to the expected offers. It is observed that the
percentages of the expected negative imbalances have a much
lower variation than the percentages of the expected positive

TABLE IV
CVaR AND TSD FOR DIFFERENT VALUES

Fig. 6. CVaR efficient frontier.

imbalances, which have a significantly greater increase as pro-
ducers become more risk averse. Equations (33) and (34) are
used to calculate the parameters which represent the imbalance
percentages, and , respectively:

(33)

(34)

B. CVaR and TSD Versus Expected Profit

The curve relating expected profits with CVaRs is usually
known as the efficient frontier. In (25) the objective function
is divided into two terms, the expected profit and the CVaR, and
both of them are multiplied by the weighting factor. CVaR is di-
rectly multiplied by and the expected profit by . Con-
sidering this equation, the producers have to select the value of
in order to rise the expected profit or the CVaR. Obviously

when one of them increases, the other one decreases. In Fig. 6,
the optimal efficient frontier is shown for the three offer cases.
The efficient frontier corresponding to the JO model is dis-

placed to the upper right hand corner, with the highest expected
profits and the highest CVaRs. Comparing the two models in
which each wind farm makes its own offer to the day-ahead
market, SO and IC, it can be observed that, for the same value
of CVaR, the expected profit is greater for the IC case. It can
also be observed that the variation of both, expected profit and
CVaR, with risk aversion is less pronounced for the JO model,
the different points of the efficient frontier being closer. This
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Fig. 7. Standard deviation and expected profit for several values.

TABLE V
VARIATION OF CVaR, STANDARD DEVIATION AND EXPECTED PROFIT

confirms that, when trading energy with a joint offer, the pro-
ducers suffer less risk impact. This is due to the risk evaluation
of the profit distributions. For the SO and IC models, one op-
timization is done for each wind farm, which leads to one dif-
ferent profit distribution (depending on scenarios) for each wind
farm. In the JO model, only a profit distribution is obtained and
the risk evaluation is done for this distribution, which results in
higher CVaR values.
The expected profits and their corresponding standard devia-

tions are represented in Fig. 7. As it happens with the CVaR ef-
ficient frontier, the different points relating the expected profit
and its associated TSD are closer in the JO case. In all cases,
as increases, the standard deviation decreases because of the
lower imbalance costs associated.
The values of CVaR and TSD are presented in Table III-B and

the changes of CVaR, TSD and the expected profit for different
values are presented in Table V. It is remarkable that, from

onwards, the increase of CVaR is very low compared
with the decrease of the expected profit.
It is expected that the maximum value of that the producers

are willing to consider is that value for which the CVaR efficient
frontier begins to be almost vertical. This value depends on
the case study and the price and wind speed scenarios and may
not even exist if the CVaR efficient frontier has an approximate
horizontal shape.

C. Hourly Analysis

In order to analyze the differences between considering high
risk aversion and low risk aversion, the hourly results are com-
pared for and . As mentioned in Section III-A,
for low values of , in which producers are less risk averse,
the expected energy sold in the day-ahead market tends to be
greater than for higher values. The optimal offers depending

Fig. 8. Optimal offers for and .

Fig. 9. Day-ahead market offer comparison for and .

on the risk aversion are presented in Fig. 8. When considering a
low value of , the expected offers for all mechanisms are very
similar. However, considering a higher value of the parameter,
the offer to the day-ahead market is considerably higher for the
JO mechanism. This is due to the fact that, when the producers
are very risk averse, they try to withhold the energy sold in the
day-ahead market. Since in the SO and IC cases each producer
withholds energy, the sum of the non-sold energy is more pro-
nounced. The differences in the optimal offers depending on the
risk aversion of each mechanism are shown in Fig. 9. It can be
observed that the optimal offer has a lower variation in the JO
case.
In Figs. 10 and 11, the expected hourly imbalances are pre-

sented for and , respectively. When is close
to zero, the predominant imbalance is negative, and positive
when it takes a value of 0.5. This happens because it is prefer-
able to trade less energy in the day-ahead market and sell the re-
maining generation in the balancing market. This trend is more
accused in the SO and IC cases. For both values of the weighting
parameter, the lowest expected hourly negative imbalance cor-
responds to the IC case in some periods, and to the JO in others,
with the result that the value of themean expected daily negative
imbalances are alike for the aforementioned cases. However, the
expected daily positive imbalance is lower if the JO strategy is
considered, although for a low value, a lower hourly positive
imbalance is associated to the IC strategy in the same periods
(Fig. 10). As can be observed in Fig. 11, the expected positive
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Fig. 10. Expected imbalances for .

Fig. 11. Expected imbalances for .

imbalance when is always lower when the producers
make a joint offer.
In any case, the biggest imbalances, both negative and posi-

tive, correspond to the SO model.
In fact, looking at Figs. 8–11, it is clearly observed that, when

the expected offer to the day-ahead market is high (low risk
aversion), the expected negative imbalances are also high and
the expected positive imbalances tend to be lower, and just the
opposite occurs when the producers become more conservative
and trade less amount of energy to the day-ahead market, con-
sidering the same wind speed and market price scenarios.
In Fig. 12 and Fig. 13 the revenues from selling the energy in

the day-ahead market are compared with the final profits. The
bars represent the revenues and the profits are plotted with lines.
Since SO and IC cases have the same revenue coming from the
energy traded, only one bar is displayed for both.
The hourly revenues are greater for , being almost

always higher than the expected profits, because of the amount
of negative imbalances (Fig. 12). Nevertheless, when the value
of is equal to 0.5, the expected profit is higher than the rev-
enue from selling the energy in the day-ahead market, due to
the amount of positive imbalances (Fig. 13). As explained in

Fig. 12. Expected revenue and profit for .

Fig. 13. Expected revenue and profit for .

(26), the imbalances make the revenue different from the final
expected profit. In addition, the differences among the JO ex-
pected profits and the SO and IC expected profits increase as
rises.
As an example, the periods with the highest differences be-

tween revenue and profit ( and ) are compared in
Table VI for . In period , the expected offer to
the day-ahead market is very low for the SO and IC cases, but
their positive imbalances are very large. Because of that, the ex-
pected profits increase considerably. In the IC case, the income
coming from the energy sold in the balancing market accounts
for 67.87% of the total expected profit. Moreover, in period

, the revenues from selling the energy in the day-ahead
market are high for both SO and IC cases and for the JO case.
Notwithstanding, the negative imbalances are the highest of all
periods. Thus, the expected profits suffer an important reduction
since the producers have to pay for the non-generated energy at
a price greater than or equal to the day-ahead market price. In
the IC case this means a loss of profit of about 52% and about
51.41% in the JO case.
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TABLE VI
EXPECTED REVENUES AND EXPECTED PROFITS FOR

Fig. 14. Comparison of the increase of profit and the correlation coefficient for
each pair of wind farms.

D. Spatial Correlation
In order to know how the spatial correlation between wind

farms improves the profitability of a joint offer, the correlation
coefficients between each pair of wind farms are computed as:

(35)

where denotes the sample covariance between the wind
power productions of wind farm andwind farm . In Fig. 14 the
increase in the expected profit between the SO and JO cases has
been compared with the correlation coefficient of each pair of
wind farms for different values. It can be observed that the
lower the correlation between wind farms, the higher the in-
crease of the expected profit, this increase being greater when
considering high values, as seen in Table III-A. In Fig. 15 the
correlation coefficients for and are compared
with the purpose of knowing if the differences obtained when
these two periods are analyzed are due to significant variations
in the correlation coefficients. The degree of correlation is pre-
sented as a continuous gradient between black and
white . Although the correlations are a little bit higher in
period , the variation is not meaningful enough to ensure
that this is the reason for the differences between periods.

E. Computational Characterization of the Models
All the problems have been solved using MATLAB R2012a

[31] and CPLEX under GAMS 24.0 [32] on aWindows 8-based
Dell Server R920 with four processors Intel Xeon E7-4820
clocking at 2 GHz and 128 GB of RAM. The total CPU time

Fig. 15. Correlation matrices for all wind farms during hours 19 and 22.

TABLE VII
ORDER OF COMPLEXITY

required to solve the stochastic model is 7410 s, analyzing
5 different values. The running times of the optimization
problems are 128 s for each 1500-scenario simulation and 842
s for each 6000-scenario simulation (joint offer). Table VII il-
lustrates the comparison between the order of complexity of
the proposed mechanisms. Since the optimization model is the
same for all cases, the difference between them requires to
run the model times for the SO and IC cases. The number
of binary variables and constraints depends on the number of
scenarios and the number of periods . However,
the number of scenarios is more relevant for the number of
continuous variables.

IV. CONCLUSION
In this paper, an optimal joint offer to the day-ahead market

for a group of wind farms is compared with other offering
strategies using a stochastic programming approach. Wind
power producers cope with uncertainty in wind speed and
market prices. The risk aversion of the wind power producers
has been incorporated using the CVaR. A complete study has
been carried out with extended results to compare different
strategies for offering energy to the day-ahead market consid-
ering different risk aversions. The analysis allows wind power
producers to obtain greater profits while ensuring a high CVaR.
The main conclusion of this paper is that an optimal joint offer
for trading energy through an external agent is more profitable
for the wind power producers. The system operation also
improves due to the imbalance reduction. It has been found that
the risk evaluation is different depending on the offer strategy.
Also, there is a clear trend to withhold the energy offered to the
day-ahead market in order to sell it in the balancing market and
reduce the negative imbalance. This trend is more pronounced
as producers become more risk averse and when they offer
their energies separately.

APPENDIX
WIND FORECAST

Hourly wind speed scenarios of each wind farm have been
forecastedwith time seriesmodels [33] using ECOTOOL [34], a
MATLAB toolbox [31], considering one year of historical data.
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Fig. 16. Wind speed adapted to the wind farm altitude.

Fig. 17. ACF and PACF of the residuals.

The procedure carried out for the wind speed forecast used to
compute the scenarios for one of the wind farms is explained.
The rest of wind farms follow the same procedure. The time se-
ries presented in Fig. 16, composed of 8760 hours of historical
wind speed data (one year), adapted to the altitude of the wind
turbines (21), is transformed through a logarithmic transforma-
tion to make the dispersion constant when the mean rises. Then,
the mathematical transformation of the time series is applied to
the ARIMA model.
The proposed general ARIMA formulation is the following:

(36)

where is the observed time series, is the residual term, ,
are a set of seasonal periods, , ,
are the differencing operators necessary

to reduce the time series to achieve mean stationary,
and , are the AR and MA polynomials
of the backshift operator : of

and is a constant.
The particular ARIMA model used is as follows:

(37)

Fig. 18. Histogram of the residuals.

The particular ARIMA model presents three differencing op-
erators necessary to achieve mean stationary and selects the sea-
sonal periods: 1, 24, and 168, reducing the trend. The
polynomial parameters used are: 1, 2, 3, 24, 48, 96, 168, 336,
and 504. In the case of the polynomial, the parameters
selected are 1, 2, 3, and 24.
The residuals of the particular ARIMA model follow a white

noise: zero mean, constant variance, uncorrelated process and
Normal distribution. The autocorrelation function (ACF) and
the parcial autocorrelation function (PACF) are portrayed in
Fig. 17 and the histogram of the residuals in Fig. 18.
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