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Strategic Offering for a Price-Maker Wind Power 
Producer in Oligopoly Markets considering Demand 

Response Exchange  

 
Abstract—This paper proposes an offering strategy for a 

Wind Power Producer (WPP) that participates in both day-ahead 
and balancing oligopoly markets as a price-maker. Penetration of 
demand response resources into smart grids is modeled by 
Intraday Demand Response eXchange (IDRX) architecture.  
A bi-level optimization framework is proposed based on multi-
agent system and incomplete information game theory. Modeling 
the WPPs in high penetration of wind power as price-makers can 
reflect the capability of this market player to directly affect the 
market prices. Simulation results indicate that the price-taker 
model of WPP is not accurate for WPPs that have significant 
market shares. By comparing the results obtained from modeling 
the WPPs as price-makers with the ones as price-takers can be 
concluded that WPPs have the market power not only to increase 
the prices of both day-ahead and balancing markets, but also to 
reduce the amount of demand response through IDRX market 
mechanism. 

Keywords—Wind power producer, Demand response exchange, 
Price-maker, Oligopoly market, Smart grid. 

I. NOMENCLATURE 
Abbreviations 
CVaR Conditional Value-at-Risk 
DA Day-Ahead 
DR Demand Response 
DRP Demand Response Provider 
DRR Demand Response Resource 
DRX Demand Response eXchange 
Genco Generation Company 
IDRX Intraday Demand Response eXchange 
ISO Independent System Operator 
LMP Locational Marginal Price 
MPEC Mathematical Program with Equilibrium 

Constraints 

MILP Mixed Integer Linear Programming 
OPF Optimal Power Flow 
REFIT Renewable Energy Feed-In Tariff 
RWM Roulette Wheel Mechanism 
SCED Security Constrained Economic Dispatch 
SCUC Security Constrained Unit Commitment 
SFE Supply Function Equilibrium 
VaR Value-at-Risk 
WPP Wind Power Producer 
Indices  
d index of DRPs 
i index of Gencos 
j index of retailers 
k Index of thermal unit cost segments 
ω index of scenarios 
Parameters  

,
k
d tc  offered cost of  block k of DRP d  

/M OC  maintenance/operation cost 
investC  investment cost 

,j tD  demand of retailer j 
,i iMU MD  minimum up and down times 

NK number of segments of thermal unit cost 
tr
 , tr

  positive and negative imbalance ratios 
,tW   wind power production 

,tSR   required spinning reserve 
α confidence level 
β weighting factor of taking risk 

, ,,up down
i i    start-up and shut-down costs 

  occurrence probability of scenario ω 
,i iRU RD  ramp up and down 

Variables  
, , ,, ,i i ia b c    coefficients of Genco’s cost function 

B  typical profit 
, ,d tCDRP   cost of DR related to DRP d 

, , , ,,DA Bal
j t j tD D   day ahead and balancing bids of retailer j 

, ,j tD   total demand of retailer j 
, ,d tDR   amount of power of DRP d traded in IDRX  

, ,,j je f   coefficients of retailers’ income  

, , , ,, cg
t k t kF F   branch flow in normal and contingency states 
, ,i tI   commitment state of unit i 

, ,i kIC   
incremental cost of unit i at segment k due to 
linearize the Genco’s cost function  
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, ,,DA Bal
t tP P   day ahead and balancing WPP offers  

, , , ,,DA Bal
i t i tP P   day ahead and balancing generations of Genco i 

,
Res

i,tP   offer of Genco i to day ahead reserve market 

, ,i tP   total generation of Genco i 

,
Sch

tP   total scheduled power of WPP  

, ,
k
d tq   scheduled power of block k of DRP d  

, , , ,,i t i ty z   start-up and shut down binary variables 
,SFE SFE   variables of offering strategy 

,t   total deviation for wind production  

,t 
 , ,t 

  positive and negative deviations 

, , ,, ,DA Bal Res
t t t      day ahead, balancing and reserve market prices 
  value-at-risk 

  variable for computing CVaR 

II.   INTRODUCTION 
OLLOWING ambitious targets set by many countries and 
regions around the world, wind power capacity has 
entered in a new large-scale development era so that this 

is not considered as a marginal generation technology 
anymore. Under this perspective, the previous support 
schemes that have been implemented for promotion of wind 
power seem to be inefficient due to the fact that these schemes 
keep WPPs aside from electricity market mechanisms and 
make WPPs isolated generation companies. In addition, 
exposing WPPs into electricity market environment can bring 
significant additional benefits for power grids such as 
improving the combination with other technologies, 
incorporating portfolio effects and procuring transparency 
concerning the total cost of promotion policy. [1]. As a result 
of both large-scale developments in wind power capacity and 
entrance of wind power generation companies to electricity 
market, WPPs may constitute a major share of the market in 
some areas. Such dominant positions may result in that some 
WPPs strategically offer in the market with the aim of 
increasing their own profits through intentionally altered 
market clearing prices. 

Several methods have been reported in the literature to 
simulate oligopoly electricity markets. In [2], an equilibrium-
band methodology based on the Nash equilibrium has been 
employed to analyze the electricity markets. In [3], an 
evolutionary game theoretic model based on genetic algorithm 
has been reported to simulate the electricity market. In [4], a 
stochastic game theoretic model based on reinforcement 
learning has been reported to study power system. In [5], a 
solution method based on the payoff matrix approach and 
polynomial equations has been reported to calculate all the 
market equilibria of multiplayer games in the electricity 
markets. In [6], a model based on game theory with Nash 
equilibrium as the solution concept has been presented to 
simulate the oligopoly behavior of competitors. In order to 
simplify the solution process has been simplified by using 
discretized strategies to form matrix games. According to 
advantages of agent-based methods to model the complex 
behavior of market players in large-scale systems, in [7], an 
agent-based method was employed to simulate the market. 

Moreover, in [8], the electricity market has been simulated by 
utilizing an agent-based computational economics. Despite the 
reported methods to simulate the oligopoly electricity markets, 
modeling the markets from WPP’s point of view has been 
rarely addressed.  

Hence, this paper proposes an offering strategy for a WPP 
with market power that competes with other GenCos and 
participates in both DA and balancing markets as a price-
maker. 

On this basis, a stochastic decision making model is 
presented for the participation of WPP in DA and balancing 
oligopoly markets. In order to simulate the mentioned 
oligopoly markets from WPP’s point of view, a bi-level 
optimization model is proposed based on multi-agent system 
and dynamic game theory. The proposed method considers the 
SFE to model the offering strategy of all players, which is one 
of the most accurate models for the simulation of game theory.  

In this model, it is supposed that information of market 
competitors (e.g., cost function of generation units) is not 
available for the WPP, similarly to reality (incomplete 
information game theory [9]).  

Furthermore, since transmission constraints may create 
opportunities for the market players to induce congestion to 
create an uncompetitive market, considering the network and 
security constraints in market simulation is vital [10]. For this 
purpose, an SCUC method is used in this paper, including AC 
power flow limits. 

Similar to other market participants, a WPP is obligated to 
offer its generation to the market one day in advance. 
Although recent advances in wind power forecast tools are 
remarkable, DA forecast errors are still significant, which may 
impose imbalance costs to WPPs.  

The utilization of DR [11]-[12], storage devices alongside 
wind farms [13], and joint operation of wind farms and hydro 
plants [14] have been suggested to minimize those imbalance 
costs. However, Ref. [15] indicates that the option with 
highest flexibility and lowest cost corresponds to DRRs, being 
nowadays at the core of innovative smart grid technologies. 

Moreover, shrinking the periods of wind power forecast 
from DA to intraday can drastically decrease the forecast 
errors and it has been proposed to overcome wind power 
uncertainties [16], [17]. Indeed, formation of such liquid 
markets close to delivery guarantees that the mentioned 
flexibility is accessible to those who really need it. At present, 
strict market rules prevent large potential of DRRs for 
engaging in the intraday market. In addition, only DA market 
provides a sufficient incentive for DR participants.  

On this basis, this paper applies both the above mentioned 
solutions developing a novel framework that allows DRRs to 
contribute into intraday markets. The current paper provides 
an IDRX market architecture for trading DR between DRPs 
and DR users (e.g., WPPs).  

The most important motivations for the establishment of an 
intraday DRX market are summarized as follows: 

- Demand response resources are mainly small size virtual 
resources that are not allowed to enter the conventional market 
due to restrict market regulations. In addition, as demonstrated 
in [16], market performance under DRX market is considerably 
better than conventional approaches. 

F
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- Allowing any player to benefit from DR paid by other 
players causes a suboptimal performance of the market and, 
consequently, there is a need for a new DR scheduling scheme 
that fairly allocates DR payments across all players based on 
the benefit that each player gets from DR and with the aim of 
ensuring optimum market efficiency [18]. In this situation, 
DRX structure creates an efficient market for trading DR. 

In such architecture, the WPP has to compete with retailers 
and distributors who purchase DR to improve their 
profitability and business. The provided architecture can also 
create an appropriate opportunity for small consumers to deal 
with multiple DR-involved players in a competitive way. In 
other word, IDRX market can attract the small consumers by 
making a competitive environment and consequently it can 
motivate them to participate in DR programs more actively. 

Although offering strategies in both DA and intraday 
markets have been reported in [19], the mentioned reference 
has considered the role of WPPs in electricity markets as 
price-takers. In [20], a stochastic model for wind power 
production has been reported in order to find the optimal 
contract sizing by participating in DA and balancing markets. 
In this reference the impact of market prices on the auxiliary 
generation and cost of reserves to accommodate the 
uncertainty of WPP has been analyzed. Moreover, a 
completely competitive electricity market has been presented; 
hence all the market players including the WPP have been 
modeled as price-takers. Even though in some recent papers 
such as [21]-[23] price-maker WPPs have been studied, the 
WPP’s competitors have been considered entirely competitive. 
Moreover, in these reports the uncertainty of market players’ 
behavior has not been considered. In [21], a stochastic bi-level 
MPEC optimization has been used to maximize the WPP’s 
revenue as the objective function. In [22], the WPP’s profit 
has been maximized as the objective function by using a 
stochastic bi-level MPEC optimization. In [23], a deterministic 
MILP optimization has been employed to maximize the 
WPP’s profit as the objective function. Additionally, in all 
previous references the participation of WPPs in DRX markets 
has not been addressed. The effect of DRX on the offering 
strategy of WPPs in a completely competitive environment 
has been investigated in [24] by using a stochastic MILP 
optimization; however, price-making WPPs and effect of 
oligopoly environment on the behavior of market players have 
not been investigated. Since the aim of WPPs is to maximize 
the profit considering the entire operation cycle, this paper 
presents three stage trading floors: oligopoly DA, IDRX 
market, and balancing market. The paper takes into account 
wind power uncertainties as well as the uncertainties related to 
market players’ behavior and the prices of IDRX market. 
Moreover, in order to represent the risk preferences of the 
WPP, a risk management strategy is incorporated to the 
WPP’s objective function using CVaR.  

According to the above explanations, the contributions of 
this paper can be summarized as follows: 

- Modeling the oligopoly electricity markets from WPP’s 
point of view considering the network and security 
constraints. 

- Modeling a price-maker WPP in both DA and balancing 
markets, as well as participating in the IDRX market. 

- Modeling the uncertainty of market competitors by using 
incomplete information dynamic game theory  

The paper continues as follows: The formulation of the 
proposed strategic offering of WPPs is presented in Section II. 
Section III presents the oligopoly market model. Section IV 
describes the uncertainty characteristics and the bi-level 
stochastic programming. Section V is designated to the 
numerical studies and Section VI concludes the paper. 

III.   FORMULATION OF THE STRATEGIC OFFERING OF  
WIND POWER PRODUCERS 

A. DR modeling 
According to the benefits of DR programs to acquire 

reliable and efficient power markets, several programs have 
been legalized and implemented in numerous countries [25]. 
On this basis, numerous types of electricity demand function 
have been reported to demonstrate consumers’ response (e.g., 
[26]-[28]). To develop a market-based DR, a player called 
DRP - who aggregates the customers’ responses to participate 
in the electricity market on behalf of them - is considered. The 
considered pool-based DRX market belongs to the intraday 
horizon. This IDRX market architecture not only has 
additional advantages for WPPs, but also provides greater 
opportunities for DRPs. The WPP can compensate its 
unexpected shortages in wind generation by participating in 
the local IDRX to decrease its imbalance penalties in the 
balancing market. Moreover, DR participants are incurred to 
less financial losses because of penalty payment prevention, 
due to the more accurate DR estimation in a closer time frame 
to real time operation, and are more and more encouraged to 
participate in DR programs. A description of the DRPs price-
quantity is formulated in (1)-(4). Note that dNQ represents the 
number of bidding blocks of DRPs. 

, , , ,
1

dNQ
k

d t d t
k

DR q 


   (1) 

, , , , ,
1

.
dNQ

k k
d t d t d t

k

CDRP c q 


   (2) 

,max
, , ,

k k
d t d tq q   (3) 

max
, , ,d t d tDR DR   (4) 

B. Incorporating risk management 
The risk measure used in this study in order to demonstrate 

the integrated risk management problem of a WPP is the 
conditional value at risk at the confidence level (α-CVaR). 
This is due to the fact that this metric can be expressed 
linearly within an optimization problem and exhibits good 
mathematical properties [29]. By maximizing a discrete profit 
distribution, α-CVaR can be approximately defined as the 
expected profit of the (1-α) 100% scenarios with lowest profit, 
so it can be represented mathematically in (5). 

 CVaR E B B    
(5) 

The formulation of CVaR is given in the following as it can 
be seen in (6)-(8) [30]:  

1

1 .
1

N

Max  


  






 
 

 
  (6) 
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0B       (7) 
0   (8) 

The value of ηω sets to 0 if the profit of scenario ω is higher 
than ξ. For the remaining scenarios, ηω is assigned to the 
difference between ξ and the related profit. The amount of α is 
assigned to 0.95. The constraints (7) and (8) are utilized to 
unify the risk-metrics CVaR. 
C. Objective function 

The objective function of a WPP is to maximize the 
expected profit that can be expressed as: 

 

, , , ,

, , , , , ,
1 1 1

/
, ,

1

Max{ '    }
. .

. . . .

( )
1 .

1

N

N

DA DA Bal Bal
t t t t

T ND
DA DA

t t t t t t d t
t d

M O DA Bal invest
t t

WPP s Expected Profit
P P

r r CDRP

C P P C

   

     


 

 


 

  

   



   

  






 
 
      
 
    
 

   

  



 
(9) 

 
The two first terms in (9) represent the WPP incomes achieved 
from trading energy to the DA and balancing markets. 
 The next two terms are related to the incomes and costs in 
balancing market caused by positive and negative imbalances, 
respectively. A rational mechanism is considered for 
imbalances so that producers must resell the excess of 
generation cheaper than the DA market’s price and 
compensate the short on generation more expensive than DA 
market’s price, same as the implemented mechanism in the 
electricity market of the Iberian Peninsula [31]. The cost of 
purchasing DR from IDRX market is represented in the fifth 
term. The sixth term represents maintenance/operation cost 
and the next term denotes WPP’s investment cost obtained for 
each hour. Finally, the last term of the objective function is 
related to risk modeling using CVaR.  

In fact, Eq. (6) is related to mathematical representation of 
CVaR, while, the risk is incorporated into the main objective 
function in the last term of (9). In other words, the main 
objective function of the paper includes the expected profit 
and the CVaR multiplied by the weighting factor  . The 
factor  models the tradeoff between the expected profit and 
the CVaR. 

It should be noted that β=0 denotes a risk-taker WPP and 
β=1 represents a risk-averse one. The other considered 
constraints of the problem are expressed below: 

max
,0 DA

tP P   (10) 

, , , , ,
1

ND
Sch DA Bal

t t t d t
d

P P P DR   


    (11) 

max
,0 Sch

tP P   (12) 

, , ,
Sch

t t tW P      (13) 

, , ,t t t  
       (14) 

Constraint (10) imposes that offers in DA market should 
not be higher than the generation capacity of units installed in 
the wind farm, Pmax.  

The total scheduled energy of WPP in all DA, intraday and 
balancing markets is shown in (11). Eq. (12) limits the total 
scheduled energy in each scenario. 

Eqs. (13) and (14) are utilized to calculate the total energy 
deviation using the last scheduled energy (i.e., the sum of the 
transactions in the DA and intraday markets).  

On this basis, when wind generation is higher than the 
forecasted value in the second stage, the system requires 
downward regulation services that are provided by other 
generation units. In such situation, WPPs must sell the excess 
of their generations at a price lower than DA market’s one.  
On the contrary, in case of wind power shortage, the system 
requires upward regulation services to compensate the deficit 
of generation. In this situation, WPPs must cover the shortages 
at a price higher than DA market’s one. 

By applying the objective function to (7), the formulation 
of incorporating risk can be obtained as (15).  

, , , ,

, , , ,

1 , ,
1

/
, ,

. .

. . . .
0

( )

DA DA Bal Bal
t t t t

DA DA
t t t t t tT

ND

t d t
d

M O DA Bal invest
t t

P P

r r

CDRP

C P P C

   

   




 

 

 
 

   




 
 
    
     
 
 
    

 
 (15) 

The strategic behavior of WPP is illustrated in Fig. 1. 

IV. MODELING THE OLIGOPOLY MARKET FROM  
WIND POWER PRODUCER’S VIEWPOINT 

In this paper, aiming to improve the reality of the studies, 
the electricity market has been modeled as an oligopoly market 
instead of being perfectly competitive. For this purpose, a 
multi-agent environment based on bi-level optimization has 
been developed. The agents do not have information of their 
competitors. Hence, the mentioned environment for the WPP 
becomes an incomplete information game theory. 

It is noteworthy that the expressed method in Section V has 
been developed to overcome the uncertainties of incomplete 
information game theory.  

 

 
Fig. 1.  The proposed framework for strategic behavior of WPP. 
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The details of the proposed electricity market model from 
WPP’s viewpoint are expressed hereafter. 

A. Market players 
In the proposed agent-based model, each market player 

(e.g., Gencos and Retailers) is independently modeled using 
agents, so that their objective functions correspond to 
maximize their profit. The objective function of each Genco 
agent can be formulated as follows: 

, , , , . , , ,

, , , , , , , , ,
1 1 1

, , , , , ,

Max{  '   }
. + . + .

. .

. .

N

DA DA Bal Bal Res Res
i t t i t t i,t t

T NK

t i k i k t i i t
t k

up down
i i t i i t

Thermal Unit s Expected Profit
P P P

IC P c I

y z

     

    


   

  



 



  


 
 

     
  

   

    (16) 

subject to: 
min max

, , , , , ,. .i i t i t i i tP I P P I     (17) 

, , , 1, , , , ,i t i t i t i tI I y z       (18) 

, , , , 1i t i ty z    (19) 
1

, , , ,
1

1
iMU

i t i t j
j

y z 






   (20) 

1

, , , ,
1

1
iMD

i t i t j
j

z y 






   (21) 

, , , 1, , , , 1,. .( )i t i t i t i t iI I P P RU       (22) 

, , , 1, , 1, , ,. .( )i t i t i t i t iI I P P RD        (23) 

where , , ,min , , , , ,
1

.
NK

i t i i t i k t
k

P P I P  


   and , , , , , ,
DA Bal

i t i t i tP P P    . 

Eq. (17) denotes the unit output limits. Constraints of 
minimum up and down times are linearly expressed in (18)-
(21). Constraints of unit ramp up and ramp down are presented 
in (22) and (23), respectively.  

The other considered market players are retailers, so that 
their objective function can be formulated as follows: 

 , , , , , , , , , ,
1 1

Max{   }

. . .
N T

DA DA Bal Bal
t j t t j t t j j j t

t

Retailer's Expected Profit

D D e f D      


  


 



    
 

(24)

 
where , , , , ,

DA Bal
j t j t j tD D D   . All agents utilize the prices of 

electricity markets obtained from simulating the previous 
iteration of clearing the market transactions. After that, each 
agent maximizes its profit by using the mentioned prices to 
obtain the optimal amount of bid/offer in each hour of next 
iteration. Afterwards, the agents generate their bidding/offering 
strategies by applying the optimal quantity and price using SFE 
model. Among different models reported for offering strategy 
of market players, only SFE enables a firm to link its offering 
price with the offering quantity of its product. Therefore, each 
player uses the SFE vector (αSFE, βSFE) to submit its offers/bids 
to the markets. αSFE and βSFE are the variables of offering 
strategy in the supply function equilibrium that represent the 
slope of price-quantity curve and the y-intercept of price-
quantity curve, respectively. 

B. Clearing the electricity market transactions 
Since the WPPs are limited energy players, their behavior 

should be modeled in a specific period.  

Hence, in this paper, instead of OPF, the role of ISO in DA 
horizon in clearing the electricity market and determining 
auction winners has been defined using an SCUC problem 
[32], which maximizes social welfare considering security 
constraints. The SCUC problem maximizes the offer-based 
social welfare as expressed in (25). In addition, the objective of 
ISO in balancing market is accomplished by an SCED problem 
as presented in (26).  

From ISO’s point of view, other constraints should be 
considered as given below: 

 , , , , , , , , ,
1

Max{   }

. . .
T

DA DA DA DA Res Res
j t t i t t i t t

t j Retailers i Gencos

Social Welfare in Day - ahead  Market

D P P       
  


      
   
    (25) 

, , , , , ,
1

Max{  }

. .
T

Bal Bal Bal Bal
j t t i t t

t j Retailers i Gencos

Social Welfare in Balancing  Market

D P    
  


     
   
    (26) 

, , , ,  DA DA
j t i t

j Retailers i Gencos

D P 
 

   (27) 

, , , ,
Bal Bal
j t i t

j Retailers i Gencos

D P 
 

 
 

(28) 

max
, , , , ,.i t i t j t t

i Gencos j Retailers

P I D SR 
 

    (29) 

max max
, ,k t k kF F F    (30) 

max max
, ,
cg

k t k kF F F    (31) 

Eqs. (27) and (28) ensure the balance between supply and 
demand. The required spinning reserve is expressed in (29). 
Inequalities (30) and (31) consider the network limits in normal 
and contingency states, respectively.  

C. Relationship between model elements 
Fig. 2 shows the proposed WPP’s model to simulate the 

oligopoly behavior of the electricity market. This model can be 
described as following steps: 

- In the first step, each agent self-schedules the operation of 
its resources to maximize its profit based on the prices of the 
day-ahead (energy and reserve), the intraday DRX and the 
balancing markets obtained from the previous iteration. In this 
step, the WPP considers the uncertainties of the estimated 
coefficients of players’ cost/revenue functions using the 
method that is provided in Section V in order to reduce the risk 
of estimating mistakes. The output of this step is the agents’ 
offers/bids (αSFE, βSFE) to participate in both the day-ahead and 
balancing markets. 

- In the second step, the agents’ offers/bids are inputted to 
the SCUC program. Then, the agent of ISO obtains the 
economic solution to the participant agents in the day-ahead 
market, considering the security constraints of the system. It 
should be noted that, in this step, ISO does not consider the 
agents’ offers/bids for the balancing market; therefore, it only 
aims to maximize the social welfare in the day-ahead market. 
The output of the step is prices of the day-ahead market and 
auction winners in the day-ahead energy and reserve markets. 
The output results from (25) and includes the mentioned prices 
and auctions for all 24 hours of the day ahead. 



1551-3203 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TII.2015.2472339, IEEE Transactions on Industrial Informatics

6 
 

 
Fig. 2.  The proposed WPP’s model in oligopoly market. 

 
Fig. 3.  The proposed multi-stage stochastic technique. 

 
- In the third step, the won prices and quantities of the 

agents in each hour of the day-ahead market are known. In 
addition, the wind power forecast is updated. On this basis, 
WPP maximizes its profit by participating in the intraday 
DRX market through (9) and updated wind power data.  

- In the fourth step, the won prices and quantities of the 
agents in each hour of the day-ahead and intraday markets are 
known. Although the wind power is updated in the intraday 
session, the decisions to participate in the balancing market 
are still unknown. On this basis, each agent maximizes its 
profit by obtaining the best balancing offer/bid in hour t by 
using (9), (16) or (24). To this end, the hourly offered prices 
and quantities of the day-ahead and intraday markets are 
considered known.         

- In the fifth step, the ISO considers the agents’ offers and 
bids to the balancing market in hour t and maximizes the 
social welfare using the SCED program by (26). The output of 
this step is the won auctions and prices of the balancing 
market for hour t.  

V. UNCERTAINTY CHARACTERIZATION 
In this paper, two major sets of uncertainty are considered, 

namely wind power uncertainty and market uncertainty. In the 
IDRX market, where the WPP is a price-taker, prices of the 
mentioned market are considered as stochastic variables.  

In the DA and balancing markets, where the WPP is a 
price-maker, the behavior of market players is considered as 
another uncertainty. In order to model those uncertainties, 
cost/revenue functions of market players are also considered 
as stochastic variables. Modeling the above mentioned 
uncertainties is expressed hereafter. 

A. Wind power uncertainty modeling 
The distribution function of wind speed is usually 

considered using a Weibull distribution [33]. The probability 
distribution function of wind speed can be utilized to obtain 
the wind power produced, PGW. Based on this, the output 
power can be obtained through (32).  

 2

0  

r r co

GW
r c r

P V WS V

P P A B WS C WS V WS V

other values



  

 


      



 (32) 

where WSω denotes the wind speed of scenario ω obtained 
from the probability distribution function. A, B, and C are 
constants that can be calculated according to [33]. Vc , Vc0 and 
Vcr represent cut-in, cut-out and rated speeds, respectively. 
Different realizations of the wind power generation are 
modeled using the scenario generation process based on RWM 
[34]. At first, the distribution function is separated into several 
class intervals. Afterwards, each interval is related to a certain 
probability achieved by the PDF.  
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Consequently, due to the various intervals and the mentioned 
probabilities, RWM is utilized to generate hourly scenarios, as 
in [34]. 

B. IDRX Market prices uncertainty modeling 
The IDRX market prices are characterized by log-normal 

distribution in each hour [35].  
The probability density function of market prices is 

represented by (33). RWM technique is also applied for 
scenario generation in each hour. 

 2 21( , , ) exp ln 2
2pf      

 
      (33) 

where µ and σ represent the mean value and standard 
deviation, respectively. 

C. Uncertainty of competitors’ cost/revenue functions 
In addition to wind power, strategic behavior of a WPP 

relies on the behavior of other market participants. Incomplete 
information about market participants’ cost/revenue functions 
causes the WPP to be unable to simply predict their behavior in 
the market. It should be noted that the range of the mentioned 
functions is achievable [36], so WPP can estimate coefficients 
of cost/revenue functions. However, realizing accurate 
cost/revenue functions is impossible and the WPP should 
decrease risk of the unreliable estimation.  

In order to decrease the risk of estimation error, the WPP 
should consider some deviations for the estimated amount.  
On this basis, different scenarios are generated to cover the 
estimation errors by using RWM. Since estimation errors 
regularly have a distribution very close to the normal [37], this 
paper carries out a scenario generation by Normal distribution. 
On this basis, the value and the probability of each scenario is 
associated to mean value,  , and the standard deviation, , of 
the estimated coefficient. 
D. Stochastic programming approach 

In order to consider the impact of the two sources of 
uncertainty mentioned previously on the strategic behavior of 
the WPP, they have been characterized as stochastic 
procedures and the problem has been solved using a bi-level 
stochastic programming approach.  

In the proposed approach, each level denotes a market 
horizon as illustrated in Fig. 3. The classification of the 
decision variables in each stage is presented as follows: 

1) The first stage (here-and-now) stochastic decision 

variables are ( , ,i kIC  , ,ic  , ,je  , ,jf  , , ,
DA
j tD  , , ,i tI  , ,

DA
tP  , 

, ,
DA

i tP  , ,
Res

i,tP  , ,
Sch

tP  , , ,i ty  , , ,i tz  , ,tSR  , ,
DA

t  and ,
Res

t  ).  
In the first stage, the WPP designs the hourly offering 

strategy and submits it to the DA energy and reserve markets. 
In this stage, the source of decision is the probable realization 
of the stochastic events containing market players’ behavior, 
wind power and prices of IDRX and balancing markets.   

2) Stochastic variables ( , ,d tCDRP  , , ,d tDR   and , ,
k
d tq  ) are 

the second stage (wait-and-see) variables. 
In the second stage, the WPP submits its offering strategy 

to the IDRX market when price and quantity of DA market are 
known.  

In this stage, actual price and quantity of the IDRX and 
balancing markets and actual market players’ behavior are still 
unknown. The WPP may realize new information and thus it 
can update the DA offers between closures of the DA market 
and IDRX one. On this basis, the WPP can update its wind 
power forecast to reduce the deviation between the newest 
forecast and the DA offer. It is important to note that, intraday 
market prices and coefficients of cost/revenue functions of 
market players are assumed to be stationary stochastic 
parameters. In other words, the scenario generation of the 
mentioned parameters is accomplished according to the 
trading stage just for once; whereas, the wind power is taken 
into account as a dynamic stochastic parameter, hence it can 
be updated in each trading stage. Therefore, the wind power 
scenarios are generated by different standard deviations 
associated with the stage. It reflects the higher forecasts’ 
precision because of the closer stage to the balancing market.  

3) The third stage (realization) stochastic decision variables 
are ( ,tW  , , ,

RT
j tD  , ,

RT
tP  , ,t  , ,t 

 , ,t 
  and ,

RT
t  ). 

In this last stage, actual price and quantity of IDRX market, 
price of the balancing market, marker players’ behavior and 
wind power are known. In addition, the hourly deviation 
incurred by the WPP is obtained and consequently the 
imbalance cost is calculated. When wind power is higher than 
its predicted amount in the second stage, downward regulation 
service is imposed on the system. Therefore, the WPP has to 
sell the excess of its generation at a price lower than the one of 
DA market. In contrast, when wind power is lower than the 
predicted amount, upward regulation service is imposed on the 
system. To this end, the WPP has to compensate its shortage at 
a price higher than the one of the DA market. 

VI.   NUMERICAL STUDIES 
The proposed model has been evaluated by using a 

modified IEEE 30-bus test system consisting of one 50 MW 
wind farm on Bus 5, 4 thermal plants, 21 demand nodes and 
41 branches. The wind data and price of intraday market 
employed for the scenario generation process have been 
obtained from hourly data of Spanish electricity market in 
February 2010 [38]. Based on the wait and see technique, 
different wind power series are obtained for DA, intraday and 
balancing horizons. 

The intervals between minimum and maximum amount of 
the uncertain parameters for DA and intraday markets are 
shown in Figs. 4 and 5, respectively. Moreover, three retailers 
have been added to this system to retail the electricity to 
consumers. The data of generation units and the retailers’ 
coefficient data are presented in Appendix. Furthermore, three 
DRPs with equal market share are considered to aggregate 
local customers and offer their DR to the pool based IDRX 
market.  

In this paper, it is assumed that each DRP can offer a three-
step pair of quantity-price to the IDRX market in each hour. In 
order to obtain the mentioned pair, intraday market price has 
been employed. To this end, in all scenarios, the DRPs’ offer 
to the IDRX market is assumed to be a ratio of intraday price, 
as shown in the Appendix. 

It should be mentioned that the role of DRPs can be played 
by the mentioned retailers.  
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However, in order to clear the role of each player in the 
electricity market, the tasks of DRPs and retailers have been 
completely separated into two independent groups of market 
participants.  

WPP participates in the IDRX market as a price-taker to 
cover its unexpected wind generation shortages. The price-
taker assumption of WPP in IDRX market is due to the fact 
that DRX markets are essentially local markets comprising 
small capacity resources. Thus, a completely competitive 
market does not seem unreasonable here. Since the proposed 
IDRX market has not been implemented in real-world power 
systems, and in order to overcome the lack of input data, a 
typical load curve has been applied based on the real Spanish 
power system to illustrate the hourly available capacity of 
DRPs for participating in the IDRX market. To this end, DRP 
1 offers prices equal to 40%, 70% and 100% of intraday 
market prices, respectively, related to 25%, 75% and 100% of 
total demand response. These offered prices for DRP 2 are 
equal to 50%, 80% and 110% of intraday market prices. 
Similarly, DRP 3 offers IDRX prices equal to 60%, 90% and 
120% of intraday prices. The DRPs price-quantity offers are 
presented in the Appendix. It should be noted that, intervals 1 
to 9am, 10am to 7pm and 8 to 12pm have been respectively 
considered as low load, off-peak, and peak periods.  

In order to investigate the impact of the proposed model, 
the LMPs of Bus 5 achieved from two cases have been 
compared, namely by considering WPP as a price-taker in DA 
and balancing markets, and by considering WPP as a price-
maker in the mentioned markets. The LMPs have been 
presented in Figs. 6 to 8. As it can be seen from Figs. 6 to 8, 
when the WPP is a price-taker in DA and balancing markets, it 
is required to purchase more amount of DR from IDRX 
market to insure its profit. Because of the increase of DR 
request, the price of IDRX market increases. In addition, the 
average of LMPs in both DA and balancing markets is 
increased because of the market power of the WPP. 

According to that market power, in some hours (e.g., hours 
5 and 6) a price-maker WPP prefers to increase the prices of 
DA and balancing market in order to increase its profit. 

In order to show the effect of IDRX market on WPP’s 
profit, the results obtained from two cases, namely without 
IDRX market and with the mentioned market, have been 
presented in Figs. 9 and 10, respectively.  

The imbalance ratios are considered equal to 1.2 and 0.8. 
The amount of β is assigned to 0, which is related to a  
risk-taker WPP. It can be seen that by participating in the 
IDRX market it gives the opportunity for the WPP to 
significantly increase the balancing profit in most of the hours 
and accordingly to increase its total profit. 

The effect of DRP participation level in the IDRX market 
on WPP’s profits is presented in Table I. By increasing the 
participation of DRPs, the WPP prefers to participate in the 
IDRX market and modify its offers.  

As it can be seen that, implementation of DRPs implies a 
significant increase in the WPP’s expected profit. Except this 
initial increase, DRP participation level has an insignificant 
impact on the expected profit. The reason is that, the impact of 
the capacity of IDRX market on the WPP’s profit is decreased 
due to WPP’s installed capacity.  

Therefore, the tendency of WPP for participating in the 
IDRX market is saturated. In Table II, the proposed model has 
been compared with the existing models in the literature from 
WPP’s point of view.  

The platform that has been utilized to assess the proposed 
model is a 64-bit Workstation with two Xeon E5-2687W 8C 
3.10 GHz processors with 256 GB of RAM and an interface of 
MATLAB R2013b (8.2.0.701) and GAMS 24.0.2 has been 
employed.  

 

 
Fig. 4.  Wind power intervals in day-ahead horizon. 
 

 
Fig. 5.  Wind power intervals in intraday and balancing horizons. 
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Fig. 6.  DA market price. 
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Fig. 7.  Balancing market price. 
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Fig. 8.  IDRX market price. 
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Fig. 9.  WPP’s profits without participating in the IDRX market.  
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Fig. 10.  WPP’s profits by participating in the IDRX market.  

 
 

TABLE I 
EFFECT OF DRP PARTICIPATION LEVEL ON WPP’S COSTS AND REVENUES 

 
DRP participation levels  0% 10% 20% 30% 

Day ahead market profit ($) 11010.12 12606.45 12901.00 13022.87 

Balancing market profit ($) -2042.40 1712.92 1782.40 1791.10 

Positive imbalance revenue ($) 101.47 219.65 222.50 224.20 

Negative imbalance cost ($) 2309.70 1225.81 1233.80 1237.60 

IDRX market profit ($) 0.00 -2600.62 -2670.20 -2689.90 

CVaR ($) 6237.30 10165.10 10374.62 10403.60 

Expected total profit ($) 6759.49 10712.59 11001.90 11110.67 
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Fig. 11.  Trend of market prices in different iterations at hour 20. 
 

TABLE II 
COMPARISON BETWEEN THE PROPOSED MODEL AND THE REPORTED MODELS IN THE LITERATURE FROM WPP’S POINT OF VIEW 

 
 [23] [21] [22] [24] Proposed model 

Considered markets DA market DA market, balancing 
market 

DA market, balancing 
market 

DA market, intraday 
market, balancing market 

DA market, intraday 
market, balancing market 

WPP modeling in the 
markets 

WPP is modeled as a 
price-taker, price-maker, 

and REFIT 

Price-maker in DA 
market and deviator in 

balancing market 

Price-taker in DA market 
and Price-maker in 
balancing market 

Price-taker Price-maker in DA and 
balancing market 

Objective function Profit maximization Expected profit 
maximization Revenue maximization Expected profit 

maximization 
Expected profit 
maximization 

Modeling approach Deterministic MILP 
optimization 

Stochastic Bi-level 
MPEC optimization 

Stochastic Bi-level 
MPEC optimization 

Stochastic MILP 
optimization 

Stochastic Bi-level MILP 
optimization 

Considered uncertainties No uncertainty Wind generation, 
balancing market price 

DA market price, wind 
generation, system 

deviation 

DA market price, wind 
generation, intraday 

market price 

Wind generation, IDRX 
market price, 
competitors’ 

cost/revenue functions 
Risk management No No No CVaR index CVaR index 
Demand response 
consideration - Elastic demand - IDRX consideration IDRX consideration, 

retailer modeled 

Test system No network model IEEE 24-bus and IEEE 
118-bus No network model No network model IEEE 30-bus 

Power flow - DC power flow without 
network losses - - AC power flow with 

network losses 
Contingency 
consideration No No No No Yes (contingency on the 

lines by SCUC) 

Platform 

a Dell PowerEdge 
R910x64 computer with 
4 processors with 1.87 

GHz and 32 GB of 
RAM. 

a Linux-based server 
with 4 processors with 

2.9 GHz and 250 GB of 
RAM. 

a laptop equipped with a 
4-core processor with 

2.66 GHz. 
Not mentioned 

a 64-bit Workstation 
with two Xeon E5-

2687W 8C 3.10 GHz 
processors with 256 GB 

of RAM 

Software solver MATLAB and GAMS CPLEX 12.2.0.1 CPLEX 12 CPLEX 12.5.0.0 MATLAB and CPLEX 
12 

Computation time Approximately 3 minutes 
for all simulations 

15.28 seconds for IEEE 
24-bus, 48.43 seconds 

for IEEE 118-bus 
1680 seconds Not mentioned 109 seconds 
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Fig. 11 indicates the trend of market prices in different 
iterations at hour 20:00 (as an example), in case that a price-
maker WPP is considered. As it can be seen, on the way to 
market convergence, high deviations of market prices occur.  
In this regard, DA market price increases to about three times 
more than its settled amount in the equilibrium point, while the 
balancing and IDRX market prices increase to twice more than 
those in the converged point. On this basis, the proposed model 
enables market operators to be aware of the dynamics of the 
convergence of market interactions.  

According to Table II, main reason of higher computation 
time of the proposed model is arisen from considering 
contingencies of network by using SCUC. In addition, on 
contrary of the previously reported models, in this paper, the 
network is modeled by using a precise AC power flow.  

VII. CONCLUSIONS 
This paper presented a bi-level stochastic programming 

approach to derive the optimal offering strategy for a WPP in 
an oligopolistic electricity market, including day-ahead, 
intraday and balancing markets. Moreover, a novel local 
trading market in intraday timeframe was proposed, called 
IDRX market, in which WPP could cover offering deviations 
in an effective way. The strategic behavior of other market 
participants was also modeled through incomplete information 
game theory. In addition, the uncertainty of wind power 
generation and IDRX market prices were considered using a 
set of plausible scenarios. Simulation results showed that the 
WPP’s profit resulting from the balancing market could be 
significantly increased by participating in the IDRX market.  
Modeling the WPPs in high penetration of wind power as 
price-makers reflected the capability of this market player to 
directly affect market prices, while considering WPPs as price-
takers can be equivalent to ignoring this capability. On this 
basis, the proposed model increased the accuracy of modeling 
of WPPs in the market with high penetration of wind power, 
and consequently the ISO/the regulatory body can be aware 
about WPPs’ capability and arrange policies, rules and 
regulations to avoid/mitigate the potential of market power. 

APPENDIX 
TABLE A.1  

DRPS’ PRICE OFFER TO IDRX MARKET ($/MWH) 

 k  1 2 3 

 k
dtq  25% of total response 75% of total response 100% of total response 

Ba
se

 lo
ad

 

1
k
tc  6.86 12.01 17.15 

2
k
tc  8.58 13.72 18.87 

3
k
tc  10.29 15.44 20.58 

O
ff

 p
ea

k 1
k
tc  11.41 19.96 28.52 

2
k
tc  14.26 22.82 31.37 

3
k
tc  17.11 25.67 34.22 

Pe
ak

 1
k
tc  13.28 23.24 33.20 

2
k
tc  16.60 26.56 36.52 

3
k
tc  19.92 29.88 39.84 

TABLE A.2 
GENERATION UNITS’ DATA 

Genco a (MBtu 
/MW2h) 

b (MBtu 
/MWh) c (MBtu) Start-up 

(MBtu) 
Pmax 

(MW) 
Pmin 

(MW) 

Min 
down/up 

(h) 

Ramp 
(MW/h) 

1 μ=0.01532 μ=12.5 μ=199.1 μ=566 84 25 6/6 30 σ=2 σ=2 σ=2 σ=2 

2 μ=0.00889 μ=12.4 μ=275.6 μ=953 95 34 4/1 70 σ=1 σ=1 σ=1 σ=1 

3 μ=0.01508 μ=16.2 μ=133.9 μ=596 85 15 1/1 50 σ =0.5 σ =0.5 σ =0.5 σ=0.5 

4 
μ=0.00208 μ=13.9 μ=209.5 μ=775 

80 39 1/2 65 σ=2 σ=2 σ=2 σ=2 

TABLE A.3 
RETAILERS’ COEFFICIENT DATA 

Retailer 1 2 3 
e ($) μ=380, σ=2 μ=390, σ=1 μ=370, σ=0.5 

f ($/MWh) μ=-0.10, σ=2 μ=-0.15, σ=1 μ=-0.12, σ=0.5 

TABLE A.4 
WPP’S DATA  

Maintenance/operation cost 
($/MWh)* Investment cost ($/h)** Pmax (MW) Pmin (MW) 

4 658 50 0 

* Maintenance/operation cost of wind turbine equals to 35 $/kW/year [39]. 
** The wind turbine investment cost equals to 1250 $/kW with useful life of 25 
years [39]. 
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