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Abstract—In this paper, a detailed Home Energy Management 

System structure is developed in order to determine the optimal 
day-ahead appliance scheduling of a smart-household under 
hourly pricing and peak power limiting (hard and soft power 
limitation) based demand response (DR) strategies.  All types of 
controllable assets have been explicitly modeled, including 
thermostatically controllable (air conditioners and water heaters) 
and non-thermostatically controllable (washing machines and 
dishwashers) appliances, together with electric vehicles (EV). 
Furthermore, an energy storage system (ESS) and distributed 
generation at the end-user premises are taken into account.  
Bi-directional energy flow is also considered through advanced 
options for EV and ESS operation. Finally, a realistic test-case is 
presented with a sufficiently reduced time granularity, being 
thoroughly discussed in order to investigate the effectiveness of 
the model. Stringent simulation results are provided using data 
gathered from real appliances and real measurements. 
 

Index Terms—demand response, distributed generation, 
electric vehicles, energy storage system, home energy 
management, smart household. 

I. NOMENCLATURE 
The main nomenclature used throughout the paper is stated 

below.  
A.  Sets ݉     set of shifting appliances. ݌     set of operating phases of appliances. ݐ      set of time periods.  
B.  Parameters ܽ   ratio of increase over maximum daily price for 

pricing excessive power drawn from the grid. ܣ௜     element area [m2]. ܿ௔     thermal capacity of air [kJ/kg·Ԩ]. ܥ      EWH thermal capacitance [kWh/0C]. 

                                                           
This work was supported by FEDER funds (European Union) through 

COMPETE and by Portuguese funds through FCT, under Projects FCOMP-
01-0124-FEDER-020282 (Ref. PTDC/EEA-EEL/118519/2010) and 
UID/CEC/50021/2013. Also, the research leading to these results has received 
funding from the EU Seventh Framework Programme FP7/2007-2013 under 
grant agreement no. 309048 (project SiNGULAR). 

N. G. Paterakis and J. P. S. Catalão are with the Univ. Beira Interior, 
Covilhã, Portugal, and with INESC-ID, Inst. Super. Tecn., Univ. Lisbon, 
Lisbon, Portugal (e-mails: nikpaterak@gmail.com, catalao@ubi.pt). 

Ozan Erdinc is with Department of Electrical Engineering, Yildiz 
Technical University, Istanbul, Turkey (e-mail: oerdinc@yildiz.edu.tr; 
ozanerdinc@gmail.com).  

A. G. Bakirtzis is with the Aristotle University of Thessaloniki (AUTh), 
Thessaloniki, Greece (e-mail: bakiana@eng.auth.gr). 

 

ா௏ܧܦ .ாௌௌ     discharging efficiency of ESSܧܦ .coefficient of performance       ܱܲܥ .ா௏     charging efficiency of EVܧܥ .ாௌௌ     charging efficiency of ESSܧܥ      discharging efficiency of EV. ܮ௧      inflexible load [kW]. ݈௜       element thickness [m]. ܮଵ      house length [m]. ܮଶ      house width [m]. ܮଷ      house height [m]. ܯ௔      mass of air [kg]. ܯ      electric water heater (EWH) tank size [gallons]. ݉௧      hot water usage [gallons].  ܰ௠  number of times an appliance has to be 
operated during a day. ܲܮଵ  upper limit for the power drawn from the grid 
[kW]. ܲܮଶ  upper limit for the power sold back to the grid 
[kW]. ܲܮଵ௧  time varying upper limit for the power drawn 
from the grid [kW]. ஺ܲ஼       AC rated power [kW]. ௧ܲ௉௏,௉ோை    available PV power [kW]. ௠ܲ,௣௣௛   rated power of an operating phase of a cycle of 
a non-thermostatically controllable appliance 
[kW]. ܳ       EWH capacity [kW]. ܴ       EWH thermal resistance [0C/kW].  ܴ௘௤       equivalent thermal resistance [h·oC/J]. ܴாௌௌ,௖௛     ESS charging rate [kW]. ܴாௌௌ,ௗ௜௦    ESS discharging rate [kW]. ܴா௏,௖௛     EV charging rate [kW]. ܴா௏,ௗ௜௦    EV discharging rate [kW].  ܱܵܧாௌௌ,௜௡௜  initial SOE of ESS [kWh]. ܱܵܧாௌௌ,௠௔௫    maximum SOE of EV [kWh]. ܱܵܧாௌௌ,௠௜௡    minimum SOE of EV [kWh]. ܱܵܧா௏,௜௡௜    initial SOE of EV [kWh]. ܱܵܧா௏,௠௔௫    maximum SOE of EV [kWh]. ܱܵܧா௏,௠௜௡    minimum SOE of EV [kWh]. ܵ ௧ܲ           AC temperature set-point [oC]. ܶ௔      EV arrival time.  ௧ܶ௔      outdoor air temperature [oC]. ܶௗ      EV departure time. ௠ܶ,௣ௗ௨௥  duration of a cycle of an operating phase of a 
non-thermostatically controllable appliance 
[periods]. ௧ܶ௖,௪     inlet water temperature [oC]. ܶ௛,௪,௠௜௡    minimum hot water temperature [oC]. 
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 2ܶ௛,௪,௠௔௫     maximum hot water temperature [oC]. ௛ܸ௢௨௦௘          volume of the house [m3]. ߒ߂      duration of time interval [h]. ߜ௔௜௥       air density [kg/m3]. ߣ௧௕௨௬   price at which power is bought from the grid 
[cents/kWh].  ߣ௧௦௘௟௟   price at which power is sold back to the grid 
[cents/kWh]. ߪ௜      element thermal coefficient [J/h·m·oC]. ߚ      roof angle [deg]. 

C.  Variables ௧ܲ஺஼       AC power [kW]. ௧ܲாௌௌ,௖௛       ESS charging power [kW]. ௧ܲாௌௌ,ௗ௜௦      ESS discharging power [kW]. ௧ܲாௌௌ,௦௢௟ௗ     ESS power injected to grid [kW]. ௧ܲாௌௌ,௨௦௘ௗ    ESS power used in household [kW]. ௧ܲா௏,௖௛     EV charging power [kW]. ௧ܲா௏,ௗ௜௦    EV discharging power [kW]. ௧ܲா௏,௦௢௟ௗ      EV power injected to grid [kW]. ௧ܲா௏,௨௦௘ௗ     EV power used in household [kW]. ௧ܲாௐு      EWH power [kW].  ௧ܲ௚௥௜ௗ     power drawn from grid [kW]. ௧ܲ௚௥௜ௗ,௘௫    excessive energy drawn from grid [kW]. ௠ܲ,௧௠௔௖௛  non-thermostatically controllable appliance 
power [kW]. ௧ܲ௉௏,௦௢௟ௗ     PV power injected to grid [kW]. ௧ܲ௉௏,௨௦௘ௗ     PV power used in household [kW]. ௧ܲ௦௢௟ௗ     power injected back to grid [kW]. ௧ܵௗ deviation of the indoor temperature from the 
ideal point to down side [oC]. ௧ܵ௨ deviation of the indoor temperature from the 
ideal point to upper side [oC]. ܱܵܧ௧ாௌௌ    ESS state-of-energy [kWh]. ܱܵܧ௧ா௏     EV state-of-energy [kWh]. ௧ܶ௛,௪     hot water temperature [oC].  ௧ܶ௥      room temperature [oC].  ݑ௧஺஼       binary variable - 1 if AC is operating, else 0. ݑ௧ாௌௌ     binary variable - 1 if ESS is charging, else 0. ݑ௧ா௏      binary variable - 1 if EV is charging, else 0.  ݑ௧ாௐு     binary variable - 1 if EWH is operating, else 0. ݑ௧௚௥௜ௗ   binary variable - 1 if power is drawn from the 
grid, else 0. ݑ௠,௣,௧௣௛   binary variable - 1 if non-thermostatically 
controllable appliance is in operating phase ݌, 
else 0. ݕ௠,௣,௧௣௛   binary variable - 1 if non-thermostatically 
controllable appliance starts operating phase ݌, 
else 0. ݖ௠,௣,௧௣௛   binary variable - 1 if non-thermostatically 
controllable appliance finishes operating phase ݌, else 0. 

II.  INTRODUCTION 

A.  Motivation and Background 
HE smart grid vision aims to enable more active end-user 
participation rather than just considering them passive 
consumption points, where smart households have gained 

increasing interest recently [2]-[3].  

Towards enabling smart end-user premises at household 
level, a home energy management system (HEMS) plays a 
vital role for the efficient and effective operation of such end-
user points coordinated by load serving entities (LSEs) under 
demand response (DR) strategies [4].  

HEMS receives relevant input information (such as pricing 
data that can be day-ahead, hour-ahead, peak power limits, 
warnings for planned contingencies, etc.) from LSE and  
plans the operation of all electrical aspects of the household 
with a pre-defined aim under imposed constraints by means  
of LSE restrictions, consumer preferences, among others [5]-
[6].   

Here, different electrical aspects provide several pros and 
cons in terms of effective HEMS based operating strategy. 
There are several types of electrical appliances that can be 
classified as thermostatically controllable (air conditioners-
ACs, electric water heaters-EWHs, etc.), non-thermostatically 
controllable (washers, dryers, etc.) and non-controllable 
appliances [7]. Here, as new electrical aspects, electric 
vehicles (EVs) in terms of a load or even a mobile storage 
unit, distributed generation (DG) such as roof-top photovoltaic 
(PV) units, as well as energy storage systems (ESSs) are also 
gaining importance nowadays within end-user premises with 
incentives given to local production and use of energy in 
consumption points in many countries all around the world. 
To capture the benefits of all such electrical aspects as well as 
to cover consumer preferences and limitations, an effective 
HEMS structure is strongly required. 

B.  Literature Overview 
A broad literature is recently dedicated to implementation 

of different HEMS strategies for smart households. 
Chen et al. [11] and Tsui and Chan [12] developed an 

optimization strategy for the effective operation of a 
household with a price signal based DR. Li and Hong [13] 
proposed a “user-expected price” based DR strategy for a 
smart household, including also a battery based ESS aiming at 
lowering the total electricity cost by charging and discharging 
the ESS at off-peak and peak price periods, respectively. 
However, the impact of including an additional EV load that 
can also be helpful for peak clipping in certain periods when 
EV is at home and the possibility of an own production facility 
have not been evaluated in [13].  

Zhao et al. [14] considered the HEMS strategy based 
control of a smart household, including photovoltaic (PV) 
based own production facility and availability of EV and ESS. 
However, vehicle-to-home (V2H) and further possible 
vehicle-to-grid (V2G) operating modes of EV have not been 
taken into account in [14]. Restegar et al. [15] developed a 
smart home load commitment strategy considering all the 
possible operating modes of EV and ESS. However, that paper 
neglected the impact of an extra peak power limiting strategy 
that is probable to be imposed by a LSE, not considered also 
in [11]-[15].  

Pipattanasomporn et al. [16] and Kuzlu et al. [17] 
presented a HEMS strategy considering peak power limiting 
DR strategy for a smart household, including both smart 
appliances and EV charging. Shao et al. [18] also investigated 
EV for DR based load shaping of a distribution transformer 
serving a neighborhood.  

T
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However, Refs. [16]-[18] did not provide an optimum 
operating strategy considering price variability with the aim of 
obtaining the lowest daily cost apart from just limiting peak 
power drawn from the grid by the household in certain periods. 

Matalanas et al. [19] applied an HEMS based on neural 
networks with experimental results for a household including 
PV and ESS. However, the impacts of varying price as well as 
other types of DR strategies have not been evaluated in [19].  

Angelis et al. [20] performed the evaluation of a HEMS 
strategy considering the electrical and thermal constraints 
imposed by the overall power balance and consumer 
preferences. Chen et al. [21] provided an appliance scheduling 
in a smart home considering dynamic prices and appliance 
usage patterns of a consumer. Missaoui et al. [22] provided a 
smart building energy management strategy based on price 
variations and external conditions, as well as comfort 
requirements. The pricing data based energy management has 
also been suggested by Hu and Li [23] together with a 
hardware demonstration. Erdinc [24] considered both pricing 
and peak power limiting DR, but neglected the possibility of 
two-way energy trading possibility for EV and ESS with the 
grid, which can further improve the economic advantage of 
the HEM structure by increased flexibility. Erdinc et al. [25] 
imposed distributed renewable energy contribution to reduce 
load demand on utility side, V2H option of EV to lower the 
demand peak periods, and two-way energy trading capability 
of EV (with V2G) and a possible ESS together with different 
DR strategies. However, the study in [25] neglected the 
operating strategy of thermal loads such as ACs and EWHs 
that have a vital role in end-user comfort level supply and 
energy consumption variation within a residential area. 
Besides, only a hard peak power limiting strategy and a single 
type of pricing strategy have been considered in [25] with a 
time granularity of 1 h that prevents a more detailed analysis 
of appliance scheduling and impacts of further different DR 
strategies.  

In the literature, there are many methods to formulate a 
HEMS based optimal in-home power scheduling problem. 
Methods such as particle swarm optimization [26], genetic 
algorithms [27], game theory [28], etc. comprise a part in the 
relevant literature. There are also studies using mixed-integer 
linear programming (MILP) approach [24, 25]. There are two 
main advantages of MILP as opposed to other proposed 
approaches. Firstly, the solution is guaranteed to be global 
optimum and, secondly, the structure of a MILP model is 
modular and may be easily modified in order to adapt to 
required customizations. Finally, there is one more important 
group of DR studies also including residential consumers that 
comprise the effect of DR in distribution networks considering 
power flow and other system operational constraints [29, 30]. 
However, such considerations are out of the scope of this study. 

These papers together with many other studies not referred 
here have provided valuable contributions to the application of 
smart grid concepts in household areas. However, many of the 
mentioned papers failed to address a combined evaluation of 
V2H operation of EV, impacts of an additional DG, bi-
directional operation of ESS, and different appliances 
including both thermostatically and non-thermostatically types 
with a sufficiently reduced time granularity under several DR 
strategies. 

C.  Contributions 
In this paper, a MILP model of the HEM structure is 

provided to investigate a collaborative evaluation of different 
pricing and peak power limiting based DR strategies, a PV 
based DG system, the capability of an EV and ESS based on 
V2H and ESS-to-home (ESS2H), and different types of  
both thermostatically and non-thermostatically controllable 
appliances, AC, EWH, washing machine and dishwasher.  

To the best knowledge of the authors, this is the first study 
in the literature combining all aforementioned operational 
possibilities in a single HEM system formulated in a MILP 
framework, which is the main novelty of this paper. Besides, a 
reduced time granularity (minute-scale) is employed to better 
analyze the effectiveness of the appliance scheduling part of 
HEMS strategy. Moreover, a thermal model of the household 
is also provided to consider the impacts of ambient conditions 
on in-house thermal dynamics for a more realistic 
consideration of thermal load operations.  

Different case studies including dynamic pricing based, 
and hard and soft peak power limiting based DR strategies 
have been conducted. Both economic and technical impacts of 
these strategies are deeply analyzed in terms of total cost of 
daily operation and improvement of load factor to have a more 
flat load pattern that is also the interest of LSE side. 

D.  Organization 
The paper is organized as follows: Section IIΙ provides the 

methodology employed in the study. Afterwards, Section IV 
includes the case studies for evaluating daily DR based 
operation strategies for the smart household. Finally, 
concluding remarks are presented in Section V. 

III.  MATHEMATICAL FORMULATION 
In this section, the formulation of the smart-household 

energy management system (Fig 1.) under a MILP approach is 
thoroughly analyzed. 

A.  Assumptions 
In order to mathematically formulate the problem, several 

assumptions are adopted. Firstly, the degradation of the EV 
battery by the charging (home to vehicle - H2V) and 
discharging cycles (V2H and V2G) is neglected considering 
that the household participates in a battery rental business 
program offered by EV manufacturers (e.g. Renault [31]). 
These programs offer a free-of-charge change of EV battery 
when battery degrades to a level that requires replacement and 
demands a monthly paid regular rental fee to the manufacturer 
[32]. Besides, due to fact that the small sized and cheap 
battery system (such as the mature lead-acid battery 
technology) considered as ESS in this study has been 
calculated to have a negligible cost for degradation per cycle 
compared to electricity rates, the cost that may be related to 
ESS degradation is also neglected for the sake of simplicity.  

The presented model receives the 24-h day-ahead hourly 
price signal through the smart-meter several hours before its 
activation. It is to be noted that this is not the actual price that 
the consumers will pay, but it provides an indication about the 
expected prices of the next-day. The actual prices are 
announced in real-time. It is to be stated that this is a common 
practice in real-life dynamic retail pricing schemes [33].  
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Fig. 1. The smart-household structure. 

 

The presented model receives the 24-h day-ahead hourly 
price signal through the smart-meter several hours before its 
activation. It is to be noted that this is not the actual price that 
the consumers will pay, but it provides an indication about the 
expected prices of the next-day. The actual prices are 
announced in real-time. It is to be stated that this is a common 
practice in real-life dynamic retail pricing schemes [33].  

Finally, all the required parameters are considered perfectly 
known. In practice, an adaptive system that learns from the 
end-users behavior may be employed or the occupants may 
insert these data themselves. Parameters such as the ambient 
temperature may be obtained by forecasts available on-line or 
by a local data-acquisition system, i.e. a weather station.  

The required infrastructure in order to enable the 
communication between the household elements with the 
HEMS has been described in [18]. 

B.  Objective Function 
The objective is to determine the least cost daily operation 

of the smart-household by optimally controlling the 
consumption of several types of appliances. This is expressed 
by (1).  ݐݏ݋ܥ  ݁ݖ݅݉݅݊݅ܯ ൌ ෍൫ ௧ܲ௚௥௜ௗ · ߒ߂ · ௧௕௨௬ߣ െ ௧ܲ௦௢௟ௗ · ߒ߂ · ௧௦௘௟௟൯௧ߣ (1)

It is to be noted that (1) stands for the actual cost of the 
household electricity consumption if only a simple day-ahead 
hourly pricing scheme is active. Other artificial or penalty 
terms regarding comfort loss or further DR schemes are 
superimposed to this basic relationship. These are elaborated 
in the following sections.  

Besides, there are also other costs related to the 
maintenance, replacement etc. of existing components (PV, 
ESS, etc.) in smart households. However, even if those costs 
can be assumed also related to the family of “other” operating 
costs, the manuscript focuses on appliance scheduling based 
HEMS directly aiming to minimize the reduction of costs 
associated with the electricity bill of the consumer and, 
therefore, such additional possible costs are neglected in this 
study. 

C.  Constraints 
    1)  Electric Vehicle 

The EV model employed in this study is described by (2)-
(8). Equation (2) defines the usage of power that comes from 
discharging the EV (V2H or V2G). Constraints (3) and (4) 
limit the charging and discharging power of the EV, 
respectively. The state-of-energy (SOE) of the EV battery is 
defined by (5) and (6), while (7) stands for the minimum and 
maximum SOE of the EV in order to avoid deep-discharge. 
Finally, (8) states that the EV should be fully charged at the 
end of the time horizon.  ௧ܲா௏,௨௦௘ௗ ൅ ௧ܲா௏,௦௢௟ௗ ൌ ா௏ܧܦ · ௧ܲா௏,ௗ௜௦, 0(2) ݐ׊ ൑ ௧ܲா௏,௖௛ ൑ ܴா௏,௖௛ · ,௧ா௏ݑ ݐ׊ א ሾܶ௔, ܶௗሿ (3)0 ൑ ௧ܲா௏,ௗ௜௦ ൑ ܴா௏,ௗ௜௦ · ሺ1 െ ,௧ா௏ሻݑ ݐ׊ א ሾܶ௔, ܶௗሿ (4)ܱܵܧ௧ா௏ ൌ ா௏,௜௡௜ܧܱܵ ൅ ா௏ܧܥ · ௧ܲா௏,௖௛ · ߒ߂ െ ௧ܲா௏,ௗ௜௦ · ݂݅ ߒ߂ ݐ ൌ ܶ௔ ௧ா௏ܧܱܵ(5) ൌ ௧ିଵா௏ܧܱܵ ൅ ா௏ܧܥ · ௧ܲா௏,௖௛ · ߒ߂ െ ௧ܲா௏,ௗ௜௦ · ݐ׊ ߒ߂ א ሺܶ௔, ܶௗሿ ா௏,௠௜௡ܧܱܵ(6) ൑ ௧ா௏ܧܱܵ ൑ ,ா௏,௠௔௫ܧܱܵ ݐ׊ א ሾܶ௔, ܶௗሿ (7)ܱܵܧ௧ா௏ ൌ ,ா௏,௠௔௫ܧܱܵ ݐ ൌ ܶௗ (8)
    2)  Energy Storage System 

The constraints that model the operation of the ESS (9)-
(14) are similar to the ones describing the operation of the EV. 
The basic difference is that unlike the EV, the ESS is available 
at the household premises all day.  ௧ܲாௌௌ,௨௦௘ௗ ൅ ௧ܲாௌௌ,௦௢௟ௗ ൌ ாௌௌܧܦ · ௧ܲாௌௌ,ௗ௜௦, 0(9) ݐ׊ ൑ ௧ܲாௌௌ,௖௛ ൑ ܴாௌௌ,௖௛ · ,௧ாௌௌݑ 0(10) ݐ׊ ൑ ௧ܲாௌௌ,ௗ௜௦ ൑ ܴாௌௌ,ௗ௜௦ · ሺ1 െ ,௧ாௌௌሻݑ ௧ாௌௌܧܱܵ(11) ݐ׊ ൌ ௧ିଵாௌௌܧܱܵ ൅ ாௌௌܧܥ · ௧ܲாௌௌ,௖௛ · ߒ߂ െ ௧ܲாௌௌ,ௗ௜௦ · ݐ׊ ߒ߂ ൐ ௧ாௌௌܧܱܵ(12)1 ൌ ,ாௌௌ,௜௡௜ܧܱܵ ݐ ݂݅ ൌ ாௌௌ,௠௜௡ܧܱܵ(13) 1 ൑ ௧ாௌௌܧܱܵ ൑ ,ாௌௌ,௠௔௫ܧܱܵ ݐ׊ (14)

    3)  Non-Thermostatically Controllable Loads 
A typical household contains loads that operate on a 

predefined cycle, by means that both the duration of their 
operation as well as their consumption during operational 
phases is known (e.g. washing-machine and dishwasher).  
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The HEMS may shift their operation in order to exploit 
low-price periods. This type of loads is modelled using (15)-
(20). Equation (15) implies that the power that the appliance ݉ is consuming during period ݐ depends on the operating 
phase that is currently active. Constraint (16) states that a 
machine cannot be in more than one operating phase 
simultaneously. Equations (17)-(19) enforce the phase 
sequence logic. Equation (17) states that the phase ݌ ends 
exactly ௠ܶ,௣ௗ௨௥ periods after it starts. Equation (18) enforces the 
logic of starting and ending of each phase. Equation (19) states 
that as soon as a phase finishes, the next phase should 
immediately start. Finally, (20) enforces the number of times a 
specific appliance must operate during the horizon. These 
constraints assume that there is not a user-preference related to 
when the appliances should perform their task. Nevertheless, if 
such options need to be considered, desired time limits may be 
enforced to (15)-(20).  

௠ܲ,௧௠௔௖௛ ൌ ෍ ௠,௣,௧௣௛ݑ · ௠ܲ,௣௣௛ , ,݉׊ ௣ݐ  (15)෍ ௠,௣,௧௣௛௣ݑ ൑ 1, ,݉׊ ௠,௣,௧௣௛ݕ(16) ݐ ൌ ௠,௣,ሺ௧ାݖ ೘்,೛೏ೠೝሻ௣௛ ௠,௣,௧௣௛ݕ(17)  െ ௠,௣,௧௣௛ݖ ൌ ௠,௣,௧௣௛ݑ െ ௠,௣,ሺ௧ିଵሻ௣௛ݑ  , ,݉׊ ,݌ ݐ ൐ ௠,௣,௧௣௛ݖ(18) 1 ൌ ௠,௣ାଵ,௧௣௛ݕ  , ,݉׊ ݌ ൏ ,ሺܲሻ݀ݎܽܿ ෍(19) ݐ ௠,௣,௧௣௛௧ݕ ൌ ܰ௠, ,݉׊ (20) ݌

    4)  Thermostatically Controllable Loads 
In this study, the operation of two thermostatically 

controllable loads, namely the EWH and the AC, is modeled 
in detail. Such models are important because they are linked 
with both occupants comfort and high energy consumption, as 
mentioned before. Especially, the occupants’ comfort is a key 
factor that determines the success of a DR program. However, 
the operation of such loads depends on the thermal inertia of 
the water or the air inside the house, which in turn may be 
exploited in order to address the aforementioned issues.    

The EWH model is adapted and suitably modified from [7], 
being represented by (21)-(24). Specifically, (21) models the 
water temperature inside the tank considering both the heat 
exchanges with the environment and the heat provided by the 
EWH resistance.  

It should be stated that the EWH tank is considered to be 
located in an area that is immediately affected by the ambient 
air temperature. Furthermore, when hot water is drawn from 
the EWH, then it is replenished by cold inlet water and the 
temperature is determined by (22). Lastly, (23) sets the 
permissible limits of the hot water temperature, while (24) 
stands for the EWH electric power consumption. 

௧ܶାଵ௛,௪ ൌ ௧ܶ௔ ൅ ܳ · ܴ · ௧ாௐுݑ െ ൫ ௧ܶ௔ െ ௧ܶ௛,௪൯ · ݁ି ೩೹ೃ·಴, ݐ׊  ൏ ܶ௠௔௫, ݉௧ ൌ 0(21)

௧ܶାଵ௛,௪ ൌ ௧ܶ௛,௪ · ሺܯ െ ݉௧ሻ ൅ ௧ܶ௖,௪ · ݉௧ܯ , ݐ׊ ൏ ܶ௠௔௫, ݉௧ ൐ 0(22)ܶ௛,௪,௠௜௡ ൑ ௧ܶ௛,௪ ൑ ܶ௛,௪,௠௔௫, ௧ܲாௐு(23) ݐ׊ ൌ ܳ · ,௧ாௐுݑ (24) ݐ׊

An AC may be operated in an interruptible manner in order 
to reduce its electricity consumption cost. In order to apply 
this type of operation, a model to determine the temperature 
inside the house has to be developed. The indoors temperature 
depends on several factors such as the thermal properties of 
air, the heat exchange between house and ambient, as well as 
the thermodynamic properties of the building structure. In this 
study, a model based on the equivalent thermal resistance of 
the building is developed. Naturally, this model is based on 
differential equations that under several plausible assumptions 
may be linearized [34] as in (25)-(27).  

Equation (25) considers only the cooling operation, but it 
may be easily modified to consider heating as well. The 
occupants define the required set-point for several periods 
during which the indoor temperature has to comply (26). The 
variables ௧ܵௗ and ௧ܵ௨ are positive and define the deviation of 
the indoor temperature from the ideal point. They may be 
fixed by the end-user in order to define the AC dead-band (e.g. 
1oC around the set-point) or they may be included in the 
objective function under a high artificial cost in order to 
minimize the comfort violation. Equation (27) stands for the 
power used by the AC.  

௧ܶ௥ ൌ ൬1 െ 1000ߒ߂ · ௔ܿ௔ܴ௘௤൰ܯ · ௧ܶିଵ௥ ൅ 1000ߒ߂ · ௔ܿ௔ܴ௘௤ܯ · ௧ܶିଵ௔
െ ௧ିଵ஺஼ݑ ܱܲܥ · ஺ܲ஼ · 0.000277ߒ߂ · ௔ܿ௔ܯ , ݐ׊ ൐ 1 

(25)

ܵ ௧ܲ െ ௧ܵௗ ൑ ௧ܶ௥ ൑ ܵ ௧ܲ ൅ ௧ܵ௨, :ݐ׊ ܵ ௧ܲ ് ܰܽܰ (26)௧ܲ஺஼ ൌ ஺ܲ஼ · ,௧஺஼ݑ (27) ݐ׊
Note that thermostatically controllable appliances may be 

also operated in discrete modes. Such features are consistent 
with the proposed formulation since the discrete modes of 
operation of the thermostatically controllable appliances can 
be modeled by enforcing additional constraints similar to the 
ones that are enforced for the non-thermostatically 
controllable appliances. 

    5)  Other Constraints 
The power balance is described by (28). 

௧ܲ௚௥௜ௗ ൅ ௧ܲ௉௏,௨௦௘ௗ ൅ ௧ܲா௏,௨௦௘ௗ ൅ ௧ܲாௌௌ,௨௦௘ௗൌ ௧ܮ ൅ ௧ܲா௏,௖௛ ൅ ෍ ௠ܲ,௧௠௔௖௛௠ ൅ ௧ܲாௐு ൅ ௧ܲ஺஼, (28) ݐ׊

Equation (29) implies that the available PV production may 
be used to cover household load and if it exceeds it, it is sold 
back to the grid. Constraints (30), (31) and (32) define the 
energy transactions between house and grid.  ௧ܲ௉௏,௨௦௘ௗ ൅ ௧ܲ௉௏,௦௢௟ௗ ൌ ௧ܲ௉௏,௉ோை, ௧ܲ௦௢௟ௗ(29) ݐ׊ ൌ ௧ܲ௉௏,௦௢௟ௗ ൅ ௧ܲா௏,௦௢௟ௗ ൅ ௧ܲாௌௌ,௦௢௟ௗ, ௧ܲ௚௥௜ௗ(30) ݐ׊ ൑ ଵܮܲ · ,௧௚௥௜ௗݑ ௧ܲ௦௢௟ௗ(31) ݐ׊ ൑ ଶܮܲ · ሺ1 െ ,௧௚௥௜ௗሻݑ (32) ݐ׊

The parameters ܲܮଵ and ܲܮଶ may be used to impose limits 
to the power that may be drawn or injected back to the grid as 
a part of an advanced DR strategy. If no power limits are 
defined, then these parameters are set to sufficiently high 
positive values.   

D.  Power Limiting Strategies  
The HEMS described by the mathematical model 

developed previously aims at allocating as much load as 
possible during lowest price periods.  
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As a result, a potentially high penetration of smartly 
operated household loads that operate with a HEMS optimizer 
raises concerns about causing high power peaks during these 
periods. This may lead to higher electricity prices during these 
normally low-demand and low-price periods, distribution 
transformer overloading, etc. Thus, it is relevant to investigate 
several power-limiting strategies.  

    1)  “Hard” Power Limit during Several Periods 
A power limit may be imposed to the smart-households by 

responsible entities according to the DR program they 
participate. The simplest practice is to impose a limit on the 
power that may be drawn during several periods in order to 
respond to a contingency or to control the market price.  
The HEMS is aware of these limits through the smart-meter. 
To impose such limits, the parameter ܲܮଵ in (31) is substituted 
by a time-varying limit ܲܮଵ௧ . Nevertheless, this strategy may 
still lead to several other peaks due to load recovery effect.  

    2)  “Soft” Power Limit during the Day  
The “hard” limit may be imposed only for several hours 

while a DR event is in progress. Another strategy that may be 
used in order to control the maximum power drawn by the grid 
throughout the day is described by (33). Firstly, a power limit ܲܮଵ௧  is set for the applicable periods. The household is allowed 
to draw power that exceeds this limit, but the excessive energy 
is penalized. In this study, it is considered that the excessive 
energy is priced with the highest hourly price augmented by a 
percentage ܽ (e.g. 10%). This strategy is a combination of 
time-varying DR and critical peak pricing [35].  

  ௧ܲ௚௥௜ௗ ൑ ଵ௧ܮܲ ൅ ௧ܲ௚௥௜ௗ,௘௫, (33) ݐ׊

Under this scheme, the objective function is transformed to 
(34).  

ݐݏ݋ܥ ൌ ෍ ൞ ൫ ௧ܲ௚௥௜ௗ െ ௧ܲ௚௥௜ௗ,௘௫൯ · ߒ߂ · ௧௕௨௬൅ߣ ௧ܲ௚௥௜ௗ,௘௫ · ߒ߂ · ሺ1 ൅ ܽሻ · max୲൫ߣ௧௕௨௬൯െ ௧ܲ௦௢௟ௗ · ߒ߂ · ௧௦௘௟௟ߣ ൢ௧  (34)

    3)   Assessment of Power Limiting Strategy 
Generally, it may be desirable to obtain a power 

consumption curve as flat as possible in order to achieve better 
controllability of a load at a certain part of the DS. The end-
users may be given incentives in order to achieve a certain 
value of the load factor (LF) index described by (35), which 
stands for the ratio of the average net power drawn from the 
grid to the peak power. The higher the value of this index, the 
more flat the power curve of the household is. 

ܨܮ   ൌ ௔௩௚೟ቀ௉೟೒ೝ೔೏ି௉೟ೞ೚೗೏ቁ௠௔௫೟ሺ௉೟೒ೝ೔೏ି௉೟ೞ೚೗೏ሻ (35)

Another fact that is important in order to assess the 
potential macroscopic impacts of the proposed strategies on 
the operation of the power system is the load fluctuations that 
are caused by the operation of the HEMS. Steep increase or 
decrease in the load may require more regulation capacity to 
be employed by the System Operator (SO), especially as the 
penetration of smart-grid enabling technologies is increasing 
in the residential sector. For this reason, the average ramping 
index (ARI) that is a modified variant of the load turbulence 
index [36] is introduced (36). 

ܫܴܣ ൌ ሺܶሻ݀ݎ1ܿܽ ෍ห൫ ௧ܲ௚௥௜ௗ െ ௧ܲ௦௢௟ௗ൯ െ ൫ ௧ܲିଵ௚௥௜ௗ െ ௧ܲିଵ௦௢௟ௗ൯ห௧  (36)

To facilitate the regulation of the load it is desirable to have 
low MLTI values. Considering that more customers would 
enroll to such programs in the future, more severe power 
peaks could occur during relatively low price periods, causing 
violations to the voltage and current limits of the distribution 
system and increase market price volatility [30]. As a result, a 
criterion according to which a DR strategy should be 
evaluated is the smoothness of the induced load profile. 

IV.  TESTS AND RESULTS 

A.  Input Data 
Firstly, the selected time-window for the optimization is  

5 min (0.0833h). The household comprises several loads, the 
rated power of which can be found in Table I. The inflexible 
load consumption over the scheduling horizon is presented in 
Fig. 2 for a 4-member household together with the installed 
PV system’s (1kW) available production. The load profile in 
Fig. 2 is gathered from the real appliances based load profile 
generation [37]. Besides, PV production is a real measurement 
from a 1 kW roof-top PV system. 

Apart from these loads, a Chevy Volt (EV) is also 
considered. It is employed with a charging station that has a 
charging power limited to 3.3kW while its battery rating is 
16kWh [10]. The charging efficiency is considered 95%.  
It should be noted that the EV arrives at home at 5pm and 
needs to be fully charged at 6:55am of the next day. Its initial 
SOE is considered 8kWh (50%). To avoid deep discharge, the 
lowest limit is set to 4.8kWh (30%).  

The washing-machine and the dishwasher are considered 
controllable loads. Their operating cycle is described in  
Table II [38]. The washing machine consumes 2 kW during 
the heating phase, 0.15 kW during the washing and rinsing 
phase, and 0.3 kW during the spinning phase. The dishwasher 
consumes 2.2 kW for the washing, hot rinsing and drying 
phases, and 0.15 kW for the cold rinse phase. 

For the EWH the water usage pattern and the set points are 
required. It is assumed that the shower head has a flow of 2.5 
gallons/min, while each shower lasts 10 minutes (2 periods). 
During the shower the water temperature should not be less 
than 40oC.  The occupants are assumed to take showers at 
7:50am, 1:30pm and 8:30pm. During the horizon, the water 
temperature inside the EWH tank may not exceed 60oC for 
safety reasons. The EWH is considered to be located in an area 
where the temperature is not affected by AC operation. Its 
rated power is 2kW and its water capacity is 50 gallons. Other 
thermal properties of the EWH are the same as in [7].  

To control the consumption of the AC, the equivalent 
thermal resistance of the house as well as the mass of air 
inside it are both required. These calculations may be 
performed using equations (37)-(39) considering a rectangular 
geometry and an inclination of the roof of β° [20] ܴ௘௤ ൌ 1ܰ ෍ ݈௜ߪ௜޿௜௜  (37)

௛ܸ௢௨௦௘ ൌ ଵܮ · ଶܮ · ଷܮ ൅ tanሺߚሻ · ଵܮ · ௔ܯଶ (38)ܮ ൌ ௛ܸ௢௨௦௘ · ௔௜௥ߜ  (39)
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TABLE I. HOUSEHOLD APPLIANCES DATA 

Appliance 
Rated 
Power 
(kW) 

Periods 
(5-min) Appliance 

Rated 
Power 
(kW) 

Periods 
(5-min) 

Refrigerator 1.67 288 Desktop 
Computer 0.15 24 

Iron 2.4 6 Hair Straightener 0.055 2 
Toaster 0.8 2 Oven 2.4 13 
Kettle 2 2 Cooker hood 0.225 13 
Hairdryer 1.8 3 Lighting 0.1 90 
Telephone 0.005 288 Other (fixed) 0.1 288 
TV 0.083 158    

TABLE II. OPERATING PHASES OF THE APPLIANCES 
 phase 1 2 3 4 5 6 7 

Washing 
Machine 

Power (kW) 0.15 2 0.15 2 0.15 0.3 0.15
Duration 
(periods) 1 3 3 1 3 6 1 

Dishwasher 
Power (kW) 2.2 0.15 2.2 - - - - 
Duration 
(periods) 7 8 6 - - - - 

TABLE III. STRUCTURAL PARAMETERS OF THE SMART-HOUSEHOLD 
Parameter Value Units Parameter Value Units 

House 
Length ሺܮଵሻ 30 m Area of 

Windows 1 m2 

House 
Width ሺܮଶሻ 10 m Wall thermal 

coefficient 136.8 J/h·m·Ԩ
House 
Height ሺܮଷሻ 4 m 

Window 
thermal 
coefficient 

2808 J/h·m·Ԩ 

Roof Angle 
 (ߚ)

40 ݀݁݃ Thickness of 
windows 

0.05 m 

Number of 
Windows 

6 - Thickness of 
walls 

0.15 m 

 
Generally, the density of the air and its thermal capacity 

depend on its thermodynamic properties (temperature, 
pressure, etc.). In this study, they are considered constant  
and utilize standard values δୟ୧୰ ൌ 1.225 kg/m3 and  cୟ ൌ 1.01 kJ/kgԨ. Data concerning the structural parameters 
of the house are presented in Table III. For the given data the 
equivalent thermal resistance is 3.1965 · 10ି଺  ୦·ԨJ .  
The volume of the house is 1451.729 m3 and as a result the 
mass of air is 1778.369 kg. Furthermore, the AC unit has a 
rated power of 2kW and the coefficient-of-performance (COP) 
is 2. The occupants set the thermostat set-point to 25oC from 
12:30pm to 9pm. The dead-band of the thermostat is set to 
0.5oC around the set point.  

The outdoors temperature for a hot summer day and the 
inlet water temperature are given in Fig. 3. The temperature is 
adapted from hourly measured values in Heraklion, Crete, 
Greece during July 2014. Detailed data for the inlet water 
temperature are scarce and as a result for the purposes of our 
study are constructed as follows: firstly, an average 
temperature is considered (20oC). Then, due to the high 
thermal capacity of the ground, it is considered that air 
temperature affects the inlet water temperature very little (e.g. 
a positively superimposed factor of 1/7). Lastly, Gaussian 
noise is added at the temperature  in  the range of -0.5oC to 
0.5oC. The smart-meter receives the 24-h price signal 
presented in Fig. 4 that corresponds to a typical summer day. 
Day-ahead hourly prices are adapted from [33]. The PV power 
may be injected back at a feed-in tariff (FIT).  

 
Fig. 2. Inflexible load demand and PV production. 

 

 
Fig. 3. Outside air temperature and inlet water temperature. 
 

 
Fig. 4. Day-ahead hourly pricing signal. 
 

B.  Simulation Results and Discussion  
The presented simulations aim mainly at assessing the 

capability of the EMS to respond not only to the dynamic 
pricing in order to allocate the household load in the least- cost 
operation, but also to specific load-shape requirements 
imposed by the grid operator. In this respect, the capability of 
the household to sell energy back to the grid complicates the 
analysis.  Besides, the pricing policy of selling energy back to 
the grid (dynamic selling-back price, FIT, etc.) may affect the 
result and thus a separate analysis is required. Nevertheless, 
this is out of the scope of this study. In this respect, in this 
study it is considered that the household may not sell back 
energy to the grid. 

Figs. 5-7 depict the power drawn from the grid during the 
day, while Figs. 8-10 illustrate the hourly energy allocation to 
the different loads as well as the energy contribution of EV, 
ESS, PV and grid. In case no power restriction is set to the 
smart-household (Figs. 5 and 8), the HEMS allocates the loads 
to the least-price periods causing peaks to emerge early in the 
morning. Then, a “hard” limit is considered to be active from 
12am to 6:55am, periods in which the electricity prices are the 
lowest within the day and therefore a high load is expected to 
occur. 
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Fig.5. Power drawn from the grid (no power limit). 
 

 
Fig. 6. Power drawn from the grid (4kW- 12am-6:55am). 
 

 
Fig. 7. Power drawn from the grid (4kW- “soft” limit). 

 
As can be noticed in Figs. 6 and 9, during these periods the 

load is reduced to 4kW and as a result the EV is forced to 
charge using less power for a longer period. Similarly, the 
dishwasher and the washing machine are shifted. Before 11pm 
the load remains essentially the same as the one of the 
previously described case.  

Figs. 7 and 10 correspond to the case where a power limit 
equal to 4kW is enforced throughout the time horizon, 
allowing for violations under a penalty that is equal to 10% of 
the highest price of the day. As it can be noticed in Fig. 10, for 
the periods after 11pm the results are similar to the ones of the 
“hard” limit case. The ESS provides energy to the home 
during 7am and 1pm in order to eliminate the peak caused 
mainly by the non-controllable loads operating during this 
hour. Furthermore, the EWH and the AC are operated for a 
longer time in order to store energy by means of hot water and 
building structure thermal inertia, respectively.  

To sum up, comparing Figs. 5-7 demonstrates that the 
effect of limiting the power that may be drawn from the grid 
through a power-limiting DR strategy in combination with the 
price-based DR, is the re-distribution of the load among the 
lowest-price periods that coincide with the hard power limit 
(Fig. 6).  

In case of the “soft” power limit, excessive power can be 
procured, but HEMS prevents this in order to avoid being 
penalized. Besides, comparing Figs. 8-10 the re-scheduling of 
different appliances can be better observed by the shifting of 
the loads such as EV charging, washing machine, dishwasher 
etc., as mentioned before. To better illustrate the effects of 
power limiting strategies, a parametric analysis is performed 
and the results concerning the cost and the LF are presented in 
Table IV. The “hard” power limiting strategy guarantees that 
peaks do not occur during 12am-6:55am.  This leads to an 
improved load factor for all cases. Cost increases by imposing 
a stricter power limit because of shifting energy consumption 
to relatively higher price periods for hourly pricing scheme.  

 

 
Fig. 8. Hourly energy consumption and source (no power limit). 
 

 
Fig. 9. Hourly energy consumption and source (4kW- 12am-6:55am). 

 

 
Fig. 10. Hourly energy consumption and source (4kW -“soft” limit). 

 
TABLE IV. COMPARISON OF DR STRATEGIES COST AND LOAD FACTOR 

UNDER HOURLY PRICING 
Case  Cost (€) LF 

No Power Limit - 1.953 0.288 

“Hard” Power Limit 
from 12am to 6:55am

 6kW 1.956 0.348 
 5kW 1.958 0.349 
 4kW 1.979 0.349 

“Soft” Power Limit 
 6kW 1.954 0.444 
 5kW 1.960 0.467 
 4kW 1.976 0.466 

  3kW 2.064 0.465 
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TABLE V. COMPARISON OF OPTIMAL COSTS FOR DIFFERENT EV 
PARAMETERS 

Case Initial SOE (kWh) EV arrival time Cost (€) 
Base case 8 5:05 pm 1.953 

C1 8 2:15 pm 1.941 
C2 8 9:30 pm 1.989 
C3 6.3 5:05 pm 2.021 
C4 6.3 2:15 pm 2.013 
C5 6.3 9:30 pm 2.041 
C6 13.5 5:05 pm 1.769 
C7 13.5 2:15 pm 1.727 
C8 13.5 9:30 pm 1.851 

 
TABLE VI. LOAD SHAPING EFFECT OF ESS CAPACITY 

Case 
ESS 

Capacity 
(kWh) 

No Power Limit Soft power limit of 5 kW 

LF ARI 
(kW) Cost (€) LF ARI 

(kW) Cost (€) 

C1 0 0.290 0.523 2.005 0.427 0.398 2.024 
C2 1 0.289 0.565 1.989 0.439 0.438 2.005 
C3 2 0.289 0.662 1.977 0.452 0.459 1.986 

Base 
case 3 0.288 0.674 1.953 0.466 0.467 1.960 

C4 4 0.287 0.677 1.945 0.469 0.491 1.955 
C5 5 0.285 0.668 1.926 0.496 0.507 1.933 
C6 6 0.285 0.704 1.913 0.512 0.468 1.916 

 
The “soft” power limiting strategy results into flattening the 

load curve in comparison with the case in which no power 
limit is imposed. An increase in the cost of the power drawn 
from the grid is noticed because of two factors: controllable 
load is shifted to periods with greater price and also the 
excessive energy, mainly because of inflexible load, is 
penalized. It is also noticed that as the “soft” power limit 
becomes lower, the load factor is no longer improved; instead, 
it slightly decreases. This is caused by the fact that the energy 
that may be provided by the household assets (EV, ESS and 
PV) to reduce power drawn from the grid to cover inflexible 
load is limited, and thus it is not possible to mitigate peaks. 

In order to evaluate how different consumer behaviors 
affect the optimal operational cost of the smart households, 
different cases of initial EV SOE and EV arrival time are 
investigated and the relevant results are presented in Table V. 
It can be noticed that as the EVs arrive later in the day, the 
operational cost increases since they offer energy to cover a 
portion of the household load via V2H during less costly 
periods that in turn is covered by energy purchased by the grid 
during higher price periods. Another observation is that the 
increase of the initial SOE by 40.7% renders a 10.8% decrease 
in the operational cost, whilst the reduction of 21.2% in the 
initial SOE results in 2.9% higher daily energy procurement 
cost, considering that the EV arrival time is 5:05 pm.  

To complete the analysis of the proposed HEMS model, the 
impact of ESS as a load shaping mechanism is studied (Table 
VI) both for unconstrained operation of the smart household 
and considering a “soft” power limit DR strategy of 5 kW 
throughout the day. The ESS capacity varies between 0 and  
6 kWh. Note that the initial SOE of the ESS is considered 50% 
of the capacity and the charging/discharging rates are adjusted 
so that 20% of this capacity can be charged/discharged per 
hour. Lastly, the minimum allowable ESS capacity is 
considered 25% of the maximum capacity. First of all, it may 
be noticed that in the case in which no power limitation is 
imposed, increasing the ESS capacity results into a decrease in 
the LF and an increase in the ARI indices, respectively.  
From the perspective of the SO, the increased flexibility 

offered by the higher capacity of the ESS to the end-user 
results into a fluctuating load profile that can macroscopically 
pose challenges for the system operation (i.e. load balancing) 
as the penetration of smart technologies increases in the 
residential sector. When the “soft” limit DR strategy is 
enforced, the ESS appears to have a different role.  
As the capacity of ESS increases, it can be noticed that  
LF also increases, as a result of the HEMS being forced to 
reduce the peaks to avoid being penalized. Furthermore,  
the ARI is also reduced compared to the previous case of  
not enforcing the DR strategy. Note that, in all cases, 
increasing the capacity of the ESS results into reduced costs.  

C.  Practical Applicability of the Proposed Approach 
The 5-minute time frame is adequate in order to describe in 

detail the use of several household appliances, such as a 
hairdryer as well as user behavior (arrival time of EV, duration 
of showers, etc.). In general, the number of constraints and 
variables is indicative of the computational burden associated 
with the developed model, which in turn highly depends on 
the adopted time granularity.  

The model has been coded in GAMS 24.0.2 and has been 
solved by the commercial solver CPLEX 12. The dimensions 
of the computationally worst simulation are noticeable: 18769 
constraints, 20084 variables and 13413 binary variables.  
The average solution time, considering an optimality gap of 
0%, is 16 sec on a modern laptop computer (i7 at 2.4GHz, 
4GB of RAM, 64bit Windows)  and less than 1 sec in a 
workstation (two 6-core processors at 3.46 GHz, 96 GB of 
RAM, 64-bit Windows).  

As the computational capabilities of embedded systems that 
are needed to implement HEMS and monitoring systems 
increase, it appears that such complex algorithms will be 
practically applicable even for larger scale systems. As a 
result, the model presented in this study may indeed be 
effectively employed in real-life real-time applications.  

V.  CONCLUSIONS 
In this study, a HEMS structure has been described where 

thermostatically and non-thermostatically controllable loads 
were explicitly modeled using MILP. ESS and DG were also 
considered. The aim of the optimization problem was to 
minimize the total cost to meet the electrical energy needs of 
the household in a dynamic pricing environment. Furthermore, 
the effect of several load-shaping strategies based on hard and 
soft peak power limiting DR was investigated. Then, the 
model was tested using a realistic test case with sufficiently 
low level of time granularity and the results were thoroughly 
discussed. Based on the simulations conducted, despite the 
considerable complexity of the mathematical model, the model 
proved to be computationally efficient.  
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