This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON POWER SYSTEMS

Multi-Objective Reconfiguration of Radial
Distribution Systems Using Reliability Indices

Nikolaos G. Paterakis, Student Member, IEEE, Andrea Mazza, Student Member, IEEE,
Sergio F. Santos, Ozan Erding, Member, IEEE, Gianfranco Chicco, Senior Member, IEEE,
Anastasios G. Bakirtzis, Fellow, IEEE, and Jodo P. S. Cataldo, Senior Member, IEEE

Abstract—This paper deals with the distribution network recon-
figuration problem in a multi-objective scope, aiming to determine
the optimal radial configuration by means of minimizing the active
power losses and a set of commonly used reliability indices for-
mulated with reference to the number of customers. The indices
are developed in a way consistent with a mixed-integer linear pro-
gramming (MILP) approach. A key contribution of the paper is the
efficient implementation of the e-constraint method using lexico-
graphic optimization in order to solve the multi-objective optimiza-
tion problem. After the Pareto efficient solution set is generated,
the resulting configurations are evaluated using a backward/for-
ward sweep load-flow algorithm to verify that the solutions ob-
tained are both non-dominated and feasible. Since the e-constraint
method generates the Pareto front but does not incorporate deci-
sion maker (DM) preferences, a multi-attribute decision making
procedure, namely, the technique for order preference by simi-
larity to ideal solution (TOPSIS) method, is used in order to rank
the obtained solutions according to the DM preferences, facilitating
the final selection. The applicability of the proposed method is as-
sessed on a classical test system and on a practical distribution
system.

Index Terms—Distribution system reconfiguration, epsilon-con-
straint method, loss minimization, mixed-integer linear program-
ming, multi-objective optimization, reliability.
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A. Sets and Indices
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B. Variables
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C. Parameters
M

wlosses

Index (set) of branches.
Index (set) of buses.

Index (set) of approximation points used for
the SOS2 approximation.
Set of receiving (“to”’) nodes of branch &.

Set of sending (“from”) nodes of branch b.

Set of substation nodes.

Number of clients supplied by branch b.
Similarity index.
Average similarity index.

Number of clients supplied by substation at
bus :.
Active power flow through branch & [kW].

Active power flow fed by substation at bus 4
[kWT].
Reactive power flow through branch & [kvar].

Reactive power flow fed by substation at bus
1 [kvar].
Binary variable (1 if branch & is active, else 0).

p continuous variables used to approximate the
square of the active power flow through branch
b.

p continuous variables used to approximate
the square of the reactive power flow through
branch b.

Total number of customers.

Number of buses.

Number of substation buses.

Number of customers connected at bus :.
Number of weight combinations.

Active power demand of load at bus 7 [kW].
Reactive power demand of load at bus i [kvar].
Resistance of branch b [€].

Apparent power flow limit of branch b [kVA].
Average repair time of branch b [h].

Nominal voltage of the system [kV].

Weight of the losses.
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wSAIFI Weight of the SAIFI.

X;‘ pth approximation point of P, [kW].
Xﬁ pth approximation point of ¢ [kvar].
Y;,A pth approximation point of P2 [kW?].
YPR pth approximation point of Q7 [kvar®].
Ap Failure rate of branch b [failures/year].

I. INTRODUCTION

A. Motivation

HE distribution system (DS) is the part of the power

system infrastructure that serves as a link between the
high-voltage highly meshed transmission system and the
end-users of electric energy. Typically, DS is designed as
weakly meshed system.

However, it is operated in radial configuration in order to ex-
ploit the advantages this topology offers: easier coordination
of protective measures, lower fault currents, easier voltage and
power flow control and, definitely, lower cost [1]. This is the
reason why in the majority of optimization problems regarding
the DS, the preservation of radial topology constitutes an impor-
tant constraint [2]. The reconfiguration of DS may be generally
defined as the procedure of changing the status of the switches
that activate or deactivate specific branches, in order to obtain a
specific configuration of a DS. Two main types of switches exist
in a DS: those that are normally closed (sectionalizing switches)
and those that are normally open (tie switches). Reconfiguration
is performed for various reasons, both in normal and emergency
operation conditions. In general, DS reconfiguration constitutes
a single or multi-objective nonlinear combinatorial problem.
Historically, reconfiguration was initiated with the purpose of
obtaining a radial topology leading to the lowest power losses
[3].

However, being reported that the DS is the main contributor
to the unavailability of energy supply to the end-users [4], sig-
nificant attention should be paid to its reliability enhancement.
The objective of improving the reliability of the DS stands
for the reduction in the frequency and the duration of power
interruptions that affect the customers [5]. This is generally
achieved through network automation, efficiently designed
protection schemes, reclosing and switching, fault prediction
techniques, efficiently organized and fast repair teams and the
improvement of the reliability of single components [6].

DS reconfiguration with respect to the enhancement of relia-
bility emerges as a promising operational strategy to be consid-
ered together with the aforementioned techniques, both in plan-
ning and operational phases.

B. Literature Overview

Over the past three decades significant research has been con-
ducted on the topic of optimal DS reconfiguration and a great
number of different techniques have been presented in the tech-
nical literature. A classification of the DS problems can be found
in [7].
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The most commonly met objective function is the minimiza-
tion of the active power losses often combined with other DS
problems. Jabr et al. [8] presented an exact minimum loss net-
work reconfiguration procedure based on mixed-integer convex
programming.

In [9] a harmony search algorithm was proposed and was fur-
ther extended in [10] to consider also the effect of optimal place-
ment of distributed generation (DG) on active power losses. In
[11] optimal power flow together with Benders’ decomposition
was employed in order to achieve a radial configuration with
minimum power losses. Zhang et al. [12] presented a genetic al-
gorithm based methodology to jointly optimize capacitor place-
ment and least-losses reconfiguration. Simulated annealing al-
gorithm was used in the reconfiguration of large-scale distribu-
tion systems in [13]. Finally, the minimum-current circular-up-
dating-mechanism was presented in [14].

Other objective functions include the minimization of the
node voltage deviation from its nominal value [15] and the min-
imization of the switching operations required [16].

Multi-objective approaches try to optimize a combination of
the above-mentioned objectives mainly using meta-heuristic
based techniques due to the possibility of widely exploring the
search space [17].

In the emerging smart grid scheme, DG and energy storage
systems play a key role and pose new challenges in the operation
of the DS [18]-[20]. The quantification of reliability in order to
be considered an objective for reconfiguration has been studied
in several papers.

Amanulla [5] presented a probabilistic reliability assessment
model with an algorithm to identify minimal cut sets, while re-
configuration was based on a swarm optimization. In [21] ag-
gregated objective functions were used in order to consider re-
liability indices together with network losses. A neighborhood
search algorithm was employed for the network reconfiguration.
Uncertainty and customer damage related to the unreliability of
the system were investigated through a clonal selection algo-
rithm approach in [6]. Finally, in [22] an improved shuffled frog
leaping algorithm was presented to formulate a multi-objective
problem comprising the minimization of the active power losses
and several reliability indices minimization as objectives.

Meta-heuristics based solution algorithms have resulted to be
effective in finding out pseudo-optimal solutions also for large
networks. However, an exact (deterministic) technique has the
following advantages:

1) Transparency. The introduction of new stakeholders in

the DS may increase the interest in the procedures used by
DS operators (DSOs) relevant to the operation of the DS.
This is a plausible concern since the experience from the
restructured production and transmission systems suggests
that many independent system operators (ISOs) base their
scheduling procedures on mathematical programming
models.

2) Determinacy. The solution of an exact method does not
depend on any random seeds and hence it is totally re-
producible. Conversely, for problems solved by using
methods based on meta-heuristics the results are affected
by the variability of the seed for random number extrac-
tions, which can be set up to an initial fixed value by using
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a certain programming language. However, the results are
not totally reproducible on any platform. This reduces
the acceptability of random number-dependent solvers by
DSOs.

C. Contribution and Organization of the Paper

The studies mentioned in the previous subsection did not im-
plicitly incorporate the reliability indices into the optimization
problem using an exact optimization method such as mixed-in-
teger linear programming (MILP) in a multi-objective frame-
work. The contributions presented in this paper are two-fold:

1) Instead of using heuristic methods as in most studies in
the literature, in this paper an exact technique, namely,
the augmented -constraint method (AUGMECON), is ap-
plied for the first time to the multi-objective reconfigura-
tion problem in order to generate solution points belonging
to the Pareto optimal set.

2) A number of reliability indices, such as SAIFI (System
Average Interruption Frequency Index), SAIDI (System
Average Interruption Duration Index) and AENS (Av-
erage Energy Not Supplied), are considered within the
MILP formulation. More specifically, a new technique
is proposed in order to allow for the inclusion of the
reliability indices into the MILP formulation.

The remainder of the paper is organized as follows: in
Section II the mathematical model of the investigated problem
is developed. Then, in Section III the solution procedure is
described. Results following the application of the proposed
methodology on a test system and on a practical system are
presented and discussed in Section IV. Finally, the conclusions
are drawn in Section V.

II. MODEL

A. Modeling Assumptions

The mathematical model used in this paper is formulated
from the point of view of the DSO. In the practical conduct of
DS, areference network configuration is typically considered in
normal operation. The identification of a well-established refer-
ence network configuration is relevant also for reliability pur-
poses. In fact, the conventional reliability indicators that must be
communicated to the Regulatory Authority for the determina-
tion of possible incentives or penalties referring to the continuity
of supply are calculated on the reference network. When a fault
occurs, the restoration process is executed, at the end of which
the normal conditions are re-established. In practice, network
faults are relatively rare events, and the duration of the restora-
tion process is in general very short with respect to the time
horizon used for long-term reliability studies [23]. As such, the
distribution network will operate in the reference configuration
for most of the time. Choosing a less effective reference config-
uration would lead to lower overall reliability of the system at
the end of the operation period relevant to reliability (e.g., one
year). These concepts are at the basis of the formulation of the
reliability indices used in the standards and taken into account
in this paper as well. On this basis, the following modeling as-
sumptions are introduced:

1) The network reliability is assessed for a yearly period.

2) The active power demand at each point represents the an-
nual average value.

3) The calculations are based on the reference network
configuration.

4) Only faults at the network branches are considered by as-
signing failure rates to all branches. All other components
of'the DS are considered totally reliable, since reconfigura-
tion would not induce any change to their behavior during
faults.

5) The clients affected by a fault in a specific branch are
the ones located downstream with respect to the faulted
branch.

6) DG is not considered in this study. In fact, the DSO has no
control over the DG units and is more likely to adopt con-
ventional reliability indices described in the Standards, ex-
pressing the performance of a utility or DSO in providing
continuity of supply. Currently, these indices do not con-
sider the effects of DG. The impact of DG on the reliability
assessment procedure require new metrics to be developed
[24] and is left as a future development.

The proposed model is not used for planning purposes, for
which the typical objective function is expressed in economic
terms. In the proposed approach, the DSO has to choose the
best network configuration for both reducing the losses and to
be used as an effective reference network in terms of reliability.

B. Mathematical Formulation

1) Objective Functions: the optimal radial configuration of
the DS is evaluated by means of simultaneously minimizing a
set of objective functions. The reliability indices are adapted
from the IEEE standard [25].

a) Active power losses: it has been reported that under
heavy loading condition both underground cables, as well as
overhead lines, tend to fail more often [22]. In [22] it is also
suggested that any strategy that has as a result the limitation
of the current has a positive effect on reliability. Moreover, its
minimization renders a more economical operation of the power
system since active power losses are limited as well.

To calculate the losses, the current flow through all the
branches of the system should be known by solving the power
flow equations.

The power flow problem is generally nonlinear. When
dealing with the reconfiguration problem, it becomes mixed-in-
teger nonlinear. Considering directly the power flow equations
would render the total problem mixed-integer nonlinear. Due
to the computational burden associated with this type of math-
ematical programming problems, several attempts to provide
accurate linear approximations of the power flow equations
have been proposed in the literature [26], [27].

In this paper, simplifications are adopted in order to avoid a
complete power flow representation in AUGMECON. It has
been proven in [27] that under normal operating conditions
the voltage angles are very small (e.g., [-5°, 2°]) and that
the voltage amplitudes are close to the nominal voltage level
of the system, typically within the range of [0.9 p.u., 1 p.u.].
Moreover, these assumptions are natural under a smart-grid
concept in which sufficient monitoring and control enforces
further these quality constraints [28].



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

The total power losses of the system are given by [29]

P2 2
Liy: = Z (Rb.LQb>.

3 (M)
beB
The expression of the losses is linearized using the concept of
Special Order Sets of Type 2 (SOS2) for the squares of active
and reactive power flow through branches. This is described in
detail in Section II-B2b.

b) System Average Interruption Frequency Index (SAIFI):
SAIFI is a commonly used reliability indicator by electric
power utilities. SAIFI is the average number of interruptions
per year, calculated as the weighted mean of the number of in-
terruptions assuming the number of customers as weights:

SAIFI — total number of customer interruptions

2)

total number of customers served
> AN
SAIF] = = —— 3
M 3)
where A; is the rate of the failure ¢ that affects IV; customers and
M 1is the total number of customers served.
This study focuses on the impact of branch failures to the
customers served, and thus this index is reformulated as

Zb A - |efol
= 4

The analytical way to calculate the number of customers
that are interrupted by the failure of branch & is indicated in
Section 1I-B2c. It is known that longer lines tend to have a
failure rate proportional to their length. Longer lines corre-
spond to higher impedances. Data concerning the individual
line failure rates are scarce.

To obtain the required parameters by the model the following
procedure is adopted [22]: a failure rate is specified or assumed
for both the line with the highest impedance (maximum) and the
line with the least impedance (minimum). Then, the failure rate
of the rest of the lines is determined through linear interpolation.

¢) System Average Interruption Duration Index (SAIDI):
SAIDI is also a common indicator of reliability. It states the
average outage duration per year, calculated as the weighted
mean of the duration of the interruptions assuming the number
of customers as weights:

SAIFI =

sum of customer interruption duration

SAIDI =

)

total number of custumers served

U N;
sarpr — 2idiUiNi ©)
where U; is the duration of the interruption due to failure 7. In
this study it is also reformulated as

20N Up - lefsl 7)
i .

SAIDI is not generally proportional to SAIFI. Some
branches may not be easily accessible, so it is possible that a
very rare failure takes a long time to be fixed, while a frequent
one could be fixed within minutes.

d) Average Energy Not Supplied (AENS): although
SAIFI and SAIDI focus on the interruptions experienced
by the customers, they do not provide any direct information
related to the effect of an interruption on the energy that is

SAIDI =
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Fig. 1. Topology and data for the example case.

TABLE 1
RESULTS FOR THE EXAMPLE CASE STARTING FROM THE RADIAL
CONFIGURATION OBTAINED BY OPENING ONE BRANCH

open losses SAIFI SAIDI AENS
branch  [kW] [failures/year] [h/year] |[kWh/customer/year]|
1-2 41 0.3998 1.0990 1.9960
2-3 17 0.3998 0.4003 0.8782
1-3 26 0.4001 0.4009 0.7994

not supplied to the end-users during a failure. Some feeders
may not electrify a large number of individual consumers but
may transfer large amounts of energy (e.g., to a few industrial
customers).

An index that provides that information is AEN S, being de-
fined as follows:

energy not served during interruptions

AENS = 8
total number of customers served ®)

3. U P
AENS = = —* 9
Y ()]

where P{ is the active load not supplied during failure 4. To be
able to calculate this index within the proposed approach, it has
to be transformed as

YU [Py
P (10)

The objective functions (4), (7), and (10) involve the abso-
lute value function, which is nonlinear. The most common way
to linearize these expressions is by using positive auxiliary vari-
ables. For example, suppose the absolute value of variable y is
required. Defining the positive variables y™ and y~, the con-
straints (11) and (12) yield the absolute value of the variable:

(11)
(12)

To point out that the previous objective functions are not gen-
erally co-optimized, the following example is provided. The il-
lustrative 3-node system of Fig. 1 has 3 possible radial config-
urations. Supposing that the resistance of each branch is 0.01
2, the nominal network voltage is 20 kV and the branches have
different failure rates, the results regarding all the possible ra-
dial configurations of the system are presented in Table I. It is
clear that the objective functions are conflicting.

AENS =

y=y —y
=y +y .
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2) Constraints:

a) Radiality condition: to guarantee the radial topology of
a DS, two conditions must be satisfied: 1) no loops should be
formed (tree topology), and 2) every bus of the system should
be connected to a substation point. Equation (13) guarantees that
the topology of a DS with N nodes (N of which are substation
nodes) consists of tree sub-graphs. Connectivity is guaranteed
by the power balance equations:

> ay=N-N.

bcB

(13)

In order to account for transfer nodes (i.e., nodes without pro-
duction or consumption), a simple way to avoid complicate con-
straints is to consider a very small value of consumption (e.g.,
1073 p.u) [2].

b) Active and reactive flow through branches: the active
and reactive power balance is enforced at each node through the
following constraints:

>, B

Y R+P =PPvicl (14

bEB:iGQZO beB;ieQ{”’
S Y @t =@Pvier (15
bEBHEQL? bEB:cQ]”

0<QF+P2<SE aVhe B. (16)
Equations (14) and (15) enforce the active and reactive power
balance at each node, respectively. Furthermore, the apparent
power that flows through an active branch should be less than
its rated apparent power limit, as stated by (16).
Constraints (17)—(19) stand for the linear expression of the
squares of the active power flow through SOS2:

Y s, =1vbeB (17)
peP
P=Y X}z, WeB (18)
peEP
PE=>"Y} 4 VbeB. (19)
peEP

Similarly, (20)—(22) state the linear expression of the reactive
power flow:

>z, =1vbeB (20
pEP
Qo= XF-zf,weB @1
pEP
Q;=>_ Y-z vbeB. (22)
peEP

It should be noted that variables zfp and z;;‘p are positive and
continuous. By the definition of SOS2, it is also stipulated that
no more than two adjacent values of z can be greater than zero.

This can be enforced by trivial constraints (e.g. found in
[30]), though modern solvers include this type of variables into
their supported variable types. The accuracy of this approxima-
tion depends on the sampling of the nonlinear function, i.e., the
number of samples and the intervals that are used.

It is also reported that the linearization of a function using this
method has computational advantages when using the Branch-
and-Bound algorithm that is implemented in many commercial
solvers [31].

The approximations used also correspond to some modeling
limitations. For instance, voltage regulators as well transformer
tap changers are not explicitly modeled. Capacitor banks may
be modeled as constant reactive power sources considering that
they are switchable. This may be directly incorporated into the
model, i.e., (15).

Finally, the absolute value of the active power flow through
a branch is obtained by (23) and (24):

P,=P'—-P, YbeB
|Py| = P + P, Vb e B.

(23)
(24

¢) Determination of the number of customers affected by a
branch failure: the key idea to allow for the analytical consider-
ation of the reliability indices is to establish a fictitious “flow of
customers” through each branch. Naturally, a line failure leads
to the interruption of the customers that “flow” through it. This
is enforced by (25)—(28):

Sooeh— Y cfitfea=NVi (25

be BiicQte beB:ieQi"
0< fg; KTNVieQF (26)
fgi=0VigQ’ (27)
—TN - -ap<cfy <TN - 23 Vb€ B. (28)

To obtain the absolute values of the “customers that flow”
through a branch, constraints (29)-(30) are used:

efy = cfb+ —cf, VbeB
lefy| = efi +cf, Vbe B.

(29)
(30)

The auxiliary variables ¢ fb+ and cf, are positive.

C. Optimization Problem
The optimization problem that needs to be solved is
minimize any combination of (1), (4),(7), (10)
subject to (13) — (30).

It is a multi-objective mathematical programming (MMP)
problem with linear objective functions and constraints. Its so-
lution is not straightforward and a special technique should be
adopted. This is the subject of the following section.

III. SOLUTION METHODOLOGY

The proposed solution methodology is articulated into dif-
ferent stages. The flowchart of the proposed approach is pre-
sented in Fig. 2. The details on the various stages are illustrated
in the next subsections.

A. Multi-Objective Optimization Method

A mathematical programming problem that has more than
one objective function to be optimized is called MMP problem.
Unlike the single-objective mathematical programming,
there is not in general a single solution that simultaneously
optimizes all the objective functions. In such cases, the set of
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Flowchart of the proposed approach.

Fig. 2.

efficient (or Pareto optimal, non-dominated) solutions appears.
Such solutions cannot be improved with enhancing one objec-
tive function without deteriorating at least one of the others.

Several techniques have been proposed in order to solve
MMP problems. Since the solution comprises not a single
optimal but several efficient alternatives, the intervention of
a decision maker (DM) is required in order to make the final
choice about the solution to be implemented.

Exact methods may be classified into three categories re-
garding the point at which the DM intervenes to express prefer-
ences over the objectives [32]:

1) A priori methods: the DM expresses preferences (i.e.,

weights) over the objectives before the solution processes.

2) A posteriori or Generation methods: the DM expresses
preferences after the Pareto set is discovered.

3) Interactive methods: the DM expresses preferences during
the solution procedure guiding the method to converge to
the most preferable solution.

The drawback of a priori and interactive methods is that the
DM does not have a picture of the Pareto front when called to
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express preferences while the generation methods address this
issue, allowing for the DM to intervene only after the solution
procedure, having all information at hand.

There are several classical generation methods, among which
the most famous methods are the weighted sum method and the
(simple) e-constraint method [33]. The weighted sum method
has a simple application but is outperformed by the (simple)
e-constraint method for the following reasons:

1) The e-constraint method can return efficient solutions for
both convex and non-convex Pareto optimal sets, while the
weighted sum method is useable for convex Pareto sets
only [34].

2) The e-constraint method does not require scaling of the
objective functions that can affect the results, while any
method summing up different objectives needs to provide
scaling factors, even though the variables are normalized.

3) Unlike the (simple) £-constraint method, the weighted sum
method suffers from the fact that there may be different
combinations of weights that result into the same efficient
solution. In practical terms, many more iterations would
be needed in order to discover a given number of unique
Pareto optimal solutions.

4) Insufficient selections of the weights may lead the
weighted sum method to poorly map the Pareto front.

However, despite its advantages over the weighted sum
method, the (simple) e-constraint method has several pitfalls.
For instance, it may return weakly efficient solutions if the
ranges of the objective functions over the Pareto optimal set are
not appropriately identified, the efficiency of the returned solu-
tions is not guaranteed, and the computational time increases
when dealing with more than two objective functions.

The aforementioned weaknesses of the classical e-constraint
method are addressed through an improved version, namely, the
AUGMECON, belonging to the generation methods as well, the
basic functionalities of which are presented hereafter.

AUGMECON is a variant of the e-constraint method re-
taining its advantages. Moreover, it addresses three major
concerns that are linked with the application of the (simple)
g-constraint method: 1) the ranges of the objective functions
are calculated using lexicographic optimization, 2) the effi-
ciency of the returned solutions is proven and, 3) it enables
the use of several acceleration techniques in order to achieve
computational tractability.

Detailed presentations of the method, as well as a further
improved version, are included in [34] and [35], respectively.
Without loss of generality a MMP problem with p objective
functions to be maximized (to account for minimization of an
objective function, the respective objective function is multi-
plied by —1) is considered (31):

max {fl(i), . ,fl(i), e
st.TEeS

» fp(T)} €2

where 7 is the vector of the decision variables and §' is the fea-
sible region of the problem.

The e-constraint method is applied by selecting one of the
p objective functions as the objective function of the new
problem, while the other objective functions are treated as
constraints.

The transformed problem is the following (32):
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max f1(Z)
s.t.
f2(F) > e2

[i(@) > e (32)

fp(f). 2 é€p

By the parametrical variation of the right hand of the above
constraints, efficient solutions are discovered. To apply this
method the range of the p — 1 objective functions that are
considered constraints should be known. This range is normally
calculated through the pay-off table. The pay-off table is an
p X p array that contains the values of the individual optimiza-
tion of each objective value.

The first difference between the classical -constraint method
and the AUGMECON is the calculation of the range of the ob-
jective functions through the pay-off table. In the first case, the
best (ideal) value of the objective function is attained by the di-
agonal element, in other words, the individual optimization op-
timal value. The worst value is often approximated by the worst
value of the corresponding column.

In the case of AUGMECON the pay-off table is calculated
using lexicographic optimization, which is, optimizing consec-
utively the objective functions adding as an equality constraint
the optimal value of the previous objective functions in order to
keep the optimal solutions.

This technique guarantees that the obtained solutions of the
individual optimization are Pareto optimal solutions (see the
Appendix).

Afterwards, the range of the p — 1 objective functions is di-
vided into ¢; — 1 intervals using g; grid points. Then, these g;
grid points are used to vary the right hand of the ith objective
function.

The number of the sub-problems that has to be solved is
[12_, gi. The accuracy of the efficient set approximation de-
pends on the number of grid points used, always at the expense
of computational burden, so this trade-off should be carefully
considered.

Nevertheless, the actual number of problems that have to be
solved is in practice significantly less because of acceleration
techniques that are implemented:

1) Early exit from nested loops: when the problem becomes
infeasible there is no need to examine further more
bounded cases since they will be de facto infeasible [34].

2) Use of a bypass coefficient: The objective functions are
optimized sequentially by slightly altering the objective
function as described in [35]. A surplus variable is de-
fined (as an integer variable) and is evaluated after varying
the right-hand side (RHS) of the objective functions. Ac-
cording to its value, it may be redundant to solve the next
sub-problem since it will not return a new Pareto optimal
solution but it will provide the same solution instead. As

stated in [35] the use of the bypass coefficient is more
significant when the grid density is increased (more grid
points).

Besides, AUGMECON has drawn specific research attention
recently and as a result several other acceleration techniques are
available [36].

The implementation of these techniques and the fact that
Algebraic Modeling Languages (e.g., GAMS) and commer-
cial solvers (e.g., CPLEX) implement a pre-solve stage that
directly identifies infeasible optimization problems leads to
substantially reduced computational times in comparison with
the direct application of the method.

The above concepts qualify AUGMECON as a significant
and widely acceptable exact solution technique.

B. Validation Stage

The multi-objective problem solved by AUGMECON does
not consider the complete load flow constraints in order to re-
duce the computational burden. This poses two challenges that
should be carefully addressed. Firstly, several solutions may not
be feasible in practice in terms of violating DS constraints, such
as voltage amplitude and angle. Also, several solutions that are
non-dominated from the point of view of the AUGMECON op-
timization method may turn out to be dominated after the com-
plete load flow calculations.

Since all the configurations have radial topology, the back-
ward-forward sweep method [37] (with implemented all the
physical constraints of the network) is applied.

From the load flow results, objectives involving physical
quantities of the network (e.g., losses, AENS and SAIDI)
are computed in exact way (i.e., without any approximation),
so that the set of the solution obtained by AUGMECON can
be analyzed, by eliminating all the solutions resulting either
infeasible or dominated after the load-flow computation.

After that, a further stage is applied, based on the compar-
ison of the feasible and non-dominated solutions with either the
reference Pareto front, which can be the complete Pareto front
(calculated from exhaustive search on all the distribution net-
work configurations [38]) for relatively small networks, or the
best-known Pareto front (from application of other optimization
methods) for large networks.

This stage is requested to assess whether or not the solu-
tions considered as non-dominated really belong to the refer-
ence Pareto front.

C. Multi-Attribute Decision Making Method

As stated before, the solution of the MMP comprises a set
of efficient solutions. Therefore, a DM should intervene and de-
cide one single solution to be implemented, according to his/her
preferences. The DM may decide without a systematic method,
but by experience instead. However, when dealing with a very
large set of relatively optimal solutions, a method to rank and
present a narrower subset will be very useful, facilitating the se-
lection. This falls under the umbrella of multi-attribute decision
making (MADM) problems, for which several methods have
been proposed in the literature. In this study, the technique for
order preference by similarity to ideal solution (TOPSIS) [38]
has been implemented.
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Let the solution of the aforementioned p-objective MMP
comprise m Pareto optimal alternative solutions. The TOPSIS
method evaluates the following decision matrix:

{rn x1 rm]
D= i1 Tij Tpj (33)
Tm1 Tmj Tmp

Each line of (33) represents an alternative solution, while
each column is associated with an objective (minimization or
maximization). In the general case, each objective is expressed
in different units.

Thus, the next step of the TOPSIS method is to transform the
decision matrix into a non-dimensional attribute matrix in order
to enable a comparison among the attributes. The normalization
process is performed through the division of each element by
the norm of the vector (column) of each criterion.

An element r;; of the normalized matrix is given by (34):

Tij = T (34)
i=1 T3

A set of weights w = {w, ..., wj,..., wp}, E;lzl w; =1
that express the relative importance of each objective (criterion)
is provided by the DM at this point. The weighted normalized
matrix with elements v;; is created by multiplying each column
of the matrix with elements r;; by the weight w;.

Next, the ideal (A1) and the negative-ideal {A~) solution
vectors must be specified:

AT = {(maz;(vi;)|7 € J), (min;(vi;)|j € )}

Vi=1,....m (35)
A" = {(min;(vij)lj € J). (maxi(vij)|j € )}
Vi=1,....m. (36)

In (35) and (36), .J is the set of objectives (criteria) to be max-
imized and J' is the set of objectives to be minimized. These
artificial alternatives indicate the most preferable (ideal) solu-
tion and the least preferable (negative-ideal) solutions. Then,
the separation measure of each alternative from the ideal (S;")
and the negative-ideal (S; ) solution is measured by the n-di-
mensional Euclidean distance:

St= Y (wy—of)’Vi=1,...om (37
j=1

Si_\2(17,]—Uj)2w—1,...,m. (38)
j=1

The final step in the application of the TOPSIS method is
the calculation of the relative closeness to the ideal solution.
According to the descending order of C’{" , the ranking of the
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alternatives is performed with respect to the similarity index that
is calculated by using (39):

S
Cf = e 0<Cl <L vi=1,m.

2 2

(39)

The ideal solution corresponds to the value equal to unity.

D. Sensitivity Analysis

The sensitivity analysis is usually applied in design problems
for getting information about the variation of a specific param-
eter (e.g., the rating of the equipment) by varying one of the
inputs: the less is the variation of the parameter, the more re-
sults are robust.

The study presented here does not consider design problems:
however, it is possible to examine the results of the multi-at-
tribute decision making method according to the variation
of the relevant parameter, i.e., the weights of the considered
objectives.

In fact, the DM chooses the weights of the objectives, ac-
cording to a given goal; in order to carry out a more complete
analysis, the variation of the solution ranking when the weights
vary is studied in this section. The results of this study can be
applied in case of variation of the DSO priority.

As shown in Section I1I-C, the ranking of TOPSIS is made ac-
cording to the value of the similarity index C;". Then, it is pos-
sible to introduce the number of weight combinations N , rep-
resenting all the weight combinations available for the problem
under analysis.

Furthermore, the average similarity index C;" is introduced
as well, representing the average value of the similarity index
referring to the solution 4 and obtained for all the NV weight
combinations, i.e., by indicating with C’j ; the value of similarity
index C‘:r at the weight combination j .

_ 1 NVV
ci = W Zj:1 ch. (40)

The value of the average similarity index C’j represents a
good indicator about the performance of the solution ¢ by con-
sidering different weight combinations.

The application of the above concepts in the case study ap-
plications is reported in the next section.

IV. TESTS AND RESULTS

A. Computer Implementation Details

The AUGMECON method has been coded in GAMS, and the
commercial solver CPLEX has performed the optimization for
each sub-problem. The backward/forward sweep load flow and
TOPSIS algorithms have been implemented in MATLAB. The
calculation of the best-known Pareto front used in the validation
phase is carried out with a genetic algorithm (GA) directly up-
dating the pseudo-optimal Pareto front, typically used for DS
optimal reconfiguration [17].

B. 33-Node Distribution System Test Case

1) Network Data and Multi-Objective Optimization: firstly,
the application of the proposed approach to the 12.66-kV
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TABLE II TABLE 1V
PARETO OPTIMAL SOLUTIONS OBTAINED AFTER VALIDATION STAGE PARETO OPTIMAL SOLUTIONS OBTAINED WITH THE COMPLETE ANALYSIS
FOR THE 33-NODE DISTRIBUTION SYSTEM
solution # losses .SAIFI AENS
tution 7 Tosses SATFI AENS [kW]  [failures/year] [kWh/customer/year]|
kW] |failures/year]  [kWh/customer/year] 1 139.5513 1.1048 0.4422
1 139.5513 1.1048 0.4422 2 139.9781 1.0327 04118
2 139.9780 1.0327 04118 3 140.7058 1.0316 0.4116
3 141.9160 1.0173 0.4056 4 141.9163 1.0173 0.4056
4 142.4292 1.0162 0.4054 5 1424292 10162 0.4054
5 146.2891 1.0042 0.3998
6 146.5133 1.0031 0.3995 6 1445780 10160 04054
8 148.6078 0.9982 0.3991 8 146.5133 1.0031 0.3995
9 150.2031 1.0003 0.3984 9 146.6658 1.0021 0.3999
10 150.2483 0.9991 0.3982 10 148.6078 0.9982 0.3991
11 150.9774 0.9910 0.3952 11 150.2031 1.0003 0.3984
g }gzgggg 8223‘; 8?3‘3‘2 12 1502483 09992 0.3982
14 161.5802 09841 0.3935 13 150.9774 0.9910 0.3952
14 152.5900 0.9871 0.3943
TABLE III 15 156.1000 0.9847 0.3936
OPEN BRANCHES FOR THE 33-NODE DISTRIBUTION SYSTEM SOLUTIONS 16 161.5802 0.9841 0.3936

solution # open branches
1 7-8, 9-10, 14-15, 32-33,25-29
2 7-8,9-10,14-15,28-29,32-33
3 7-8,9-10,14-15,28-29,18-33
4 7-8,10-11,14-15,28-29,18-33
5 7-8,9-10,14-15,17-18,28-29
6 7-8,10-11,14-15,17-18,28-29
7 9-10,14-15,28-29,8-21,18-33
8 10-11,14-15,28-29,8-21,18-33
9 7-8,9-10,14-15,16-17,28-29
10 7-8,10-11,14-15,16-17,28-29
11 9-10,14-15,17-18,28-29,8-21
12 10-11,14-15,17-18,28-29,8-21
13 10-11,14-15,16-17,28-29,8-21
14 10-11,13-14,16-17,28-29,8-21

33-node system [39] is examined. The acceptable bus voltage
range is set to [0.9 pu, 1.1 pu]. For the approximation of
the squares of the active (reactive) power flow through the
branches, the SOS2 techniques is applied by using 76 evenly
spaced breakpoints in the range from —3750 kW (kvar) to
3750 kW (kvar). The failure rate of the branch with the greatest
impedance is considered to be 0.4 failures/year and of the
branch with the least impedance 0.1 failures/year. For all the
other branches these values are calculated using linear interpo-
lation. The average repair time for each branch is considered
equal to 2 hours. The total demand in active and reactive
power are 3715 kW and 2000 kvar, respectively, while the total
number of clients electrified by the DS is M = 18200. The
number of clients connected to each bus is the same as in [22].

For the application of the AUGMECON method, 200 grid
points are used and the set of non-dominated solutions is
acquired. Then, the radial configurations that correspond
to these solutions are validated in terms of feasibility and
of being non-dominated after the complete load flow algo-
rithm is applied. The updated set of non-dominated solutions
and the corresponding radial configurations are presented in
Table II and Table III, respectively.

[kWh /customer /year]

AENS

SAIFI
[failures/year]
losses kW]

Fig. 3. Complete Pareto front (in black) and best-known Pareto front (from
AUGMECON) for 33-node DS.

2) Validation Stage With Pareto Front Assessment: since the
33-node network has 50 751 possible radial configurations [40],
a complete analysis on these configurations has been carried
out. The results are shown in Table IV, where non-dominated
solutions from complete analysis are reported.

The results are also shown in Fig. 3, where the red circles
represent the solutions found by AUGMECON and the “plus”
markers represent the points of the complete Pareto front.

From the comparison between Table II and Table IV, the ex-
cellent performance of AUGMECON in the creation of the com-
plete Pareto front is clear. In fact, all the 14 solutions obtained
by AUGMECON (after the validation stage) belong to the com-
plete Pareto front, i.e., 14 over 16 solutions of the complete
Pareto front are discovered. The solutions not discovered are
solution #3 and solution #5.

3) Solution Ranking With TOPSIS: finally, the TOPSIS
method is applied to the updated non-dominated set of solu-
tions. For the application of TOPSIS the relative weights of
the attributes are considered to be 0.3 for the active power
losses, 0.35 for SAIFT and 0.35 for AENS. Without loss of
generality, these values have been assumed to represent a DM
willing to give more importance to reliability aspects (70%)
with respect to the system losses (30%).
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TABLE V
PARETO OPTIMAL SOLUTIONS RANKED USING TOPSIS
FOR THE 33-NODE DISTRIBUTION SYSTEM

solution similarity losses SAIFI AENS
# index kW] [failures/year] [kWh/customer/year]|
5 0,7855  146.2891 1.0042 0.3998
3 0,7850  141.9160 1.0173 0.4056
4 0,7843  142.4292 1.0162 0.4054
6 0,7842  146.5133 1.0031 0.3995
7 0,7812  146.6658 1.0021 0.3999
8 0,7503  148.6078 0.9982 0.3991
11 0,7227  150.9774 0.9910 0.3952
10 0,7183  150.2483 0.9991 0.3982
9 0,7166  150.2031 1.0003 0.3984
2 0,7106  139.9780 1.0327 0.4118
12 0,6979  152.5900 0.9871 0.3943
13 0,6429  156.0999 0.9847 0.3936
14 0,5715  161.5802 0.9841 0.3935
1 0,4285  139.5513 1.1048 0.4422

U I A R A
23 24 25|26 27 28 29 30 31 32 33
|

|L|1||1|L|||L‘

1] [ P A A
8 9 10 11 (12 13 14 15 16 17 18

19 20 21 22

Fig. 4. Radial configuration for the top-ranked solution (33-node DS).

The relevant results of the ranking are presented in Table V.
The radial topology that corresponds to the non-dominated so-
lution that is ranked first is portrayed in Fig. 4.

4) Results of the Sensitivity Analysis: the results of the sen-
sitivity analysis are reported in Table VI. The different rankings
of the solutions forming the Pareto front for the 33-node net-
work are shown, according with the variation of the objective
weights. In order to reduce the variety of the cases shown, the
weights of the two objectives referring to the reliability (i.e.,
SAIFI and AENS) are taken with the same value, obtained
as (1—w'*2¢%) /2, with w!°**** indicating the weight of the total
losses. In this way, only the parameter w'°**°* is considered.

As expected, the rankings of the solutions with w!***¢* = 1
and w'***¢* = 0 are opposite: this fact further shows that in
effect reliability and losses are conflicting. When the param-
eter w!®**** increases from 0 to 1, there is a gradual transi-
tion of the initially top-ranked solutions towards the end of the
ranking. Intermediate values of w!***** lead to highlight some
prevailingly top-ranked solutions. For instance, by considering
wlos#es = 0.4 and w!'***** = 0.5, the first seven positions
present the same solutions, and only the last part of the ranking
is different. By considering the losses weights from 0.4 to 0.9,
the solutions #2, #3, and #4 are always present in the first four
positions. This fact reflects in the average similarity indices for
all the solutions, reported in Table VII, where the highest values
refer to the solutions #2, #3, and #4.
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C. Taiwan Power Company (TPC) Distribution System Test
Case

1) Network Data and Multi-Objective Optimization: to
demonstrate the applicability of the proposed methodology
on a practical DS, the DS of Taiwan Power Company (TPC)
is examined [41]. This system has 11 feeders, 83 normally
closed branches and 13 normally open branches. The data
are provided considering a balanced three-phase system. The
nominal voltage of the system is 11.4 kV and the acceptable
voltage range is [0.9 pu, 1.1 pu].

For the approximation of the squares of the active (reactive)
power flow through the branches, the SOS2 technique is ap-
plied by using 121 evenly spaced breakpoints in the range from
—6000 kW (kvar) to 6000 kW (kvar). The failure rate of the
branches is determined as for the 33-node system and the av-
erage repair time is considered 2 hours. The total active power
and reactive power demand are 28 350 kW and 20 700 kvar, re-
spectively, while the total number of clients electrified by the DS
is M = 17596. The number of customers connected to each bus
is decided assuming that each single client demands an apparent
power equal to 2 kVA.

For the application of the AUGMECON method, 200 grid
points are used to obtain the set of non-dominated solutions.
The radial configurations that correspond to the non-dom-
inated solutions have been validated in terms of feasibility
and of being non-dominated after running the complete load
flow algorithm. The updated set of non-dominated solutions
and the corresponding radial configurations are presented in
Table VIII and Table IX, respectively.

2) Validation Stage With Pareto Front Assessment: the total
number of radial configurations for TPC network is 6.04 - 101!,
and hence the complete analysis of all of them is not feasible.
The multi-objective GA [17] has been applied by running it 200
times with different seeds for random number extraction, for
the purpose of widely exploring the solution space. In this case,
the number of consumers located at the various nodes and the
variety of the consumer size results in mainly non-conflicting
SAIFI and AENS objectives (from the results reported in
Table IV). For this reason, only the losses and SAIFI have
been considered for further analysis. The results are summarized
in Table VIII: AUGMECON discovers four non-dominated so-
lutions, all belonging to the best-known Pareto front for the TPC
network, using a single run.

3) Solution Ranking With TOPSIS: for the application of the
TOPSIS method, the relative weights (0.3 for losses and 0.7 for
S AIFT) have been chosen to be consistent with the decision-
making used in the case of the 33-node system.

The relevant results of the ranking are presented in Table X.
The radial topology that corresponds to the top-ranked non-
dominated solution is portrayed in Fig. 5.

4) Results of the Sensitivity Analysis: in this case, with two
objectives, by imposing the losses weight w!°**¢* the SAIFI
weight w4177 s obtained as w4 F7 = 1 — wlosses,

As for the 33-node network, from the results shown in
Table XI the ranking obtained with w'?**¢* = 0 and w'***** = 1
are opposite (i.e., reliability and losses are conflicting ob-
jectives), and there is a gradual transition of the top-ranked



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

PATERAKIS et al.: MULTI-OBJECTIVE RECONFIGURATION OF RADIAL DISTRIBUTION SYSTEMS USING RELIABILITY INDICES

TABLE VI
SENSITIVITY ANALYSIS OF THE RANKING W.R.T. THE OBJECTIVE WEIGHTS FOR 33-NODE NETWORK

Wlasses
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
rank sol.# Cf; sol.# Cf sol.# Cf; sol.# Cf sol.# C sol# Cf sol# Gy sol.# Cf sol.# Cf sol.# Cf sol# C
1 14 1 11 0.896 6 0.822 5 0.786 3 0.815 3 0.843 2 0.871 2 0911 2 0.943 2 0.969 1 1
2 13 099 12 0.893 7 0.820 3 0.785 4 0.809 4 0.832 3 0.864 3 0.879 3 0.888 1 0.940 2 0981
3 120979 13 0.872 5 0819 4 0.784 2 07697 2 0.823 4 0.849 4 0860 1 0.875 3 0.892 3 0.892
4 11 0952 8 0.864 8 0.812 6 0.784 5 0.753 5 0.728 1 0.724 1 0.803 4 0.866 4 0.869 4 0.869
5 10 0889 10 0.860 11 0.808 7 0.781 6 0.748 6 0.721 5 0.711 5 0.702 5 0.697 5 0.695 5 0694
6 8 0.884 9 0.854 12 0.793 8 0.750 7 0.744 7 0.716 6 0.703 6 0.692 6 0.687 6 0.685 6 0684
7 9 0.881 7 0.850 10 0793 11 0.723 8 0.694 8 0.651 7 0.697 7 0.686 7 0.680 7 0.678 7 0677
8 7 0.859 6 0.849 9 0790 10 0718 10 0.650 1 0.636 8 0.621 8 0.604 8 0.594 8 0.590 8 0589
9 6 0.859 5 0.843 4 0.762 9 0.717 9 0.650 9 0.597 9 0.559 9 0.536 9 0.524 9 0.518 9 0517
10 5 0.851 14 0.837 3 0.758 2 0.711 11 0.646 10 059 10 0558 10 0535 10 0522 10 0516 10 0514
11 4 0.744 4 0.749 13 0.753 12 0.698 12 0.612 11 0.584 11 0.538 11 0.508 11 0.491 11 0.483 11 0481
12 3 0.738 3 0.743 14 069 13 0.643 13 0.543 12 0539 12 0483 12 0444 12 0422 12 0411 12 0408
13 2 0.611 2 0.622 2 0.657 14 0572 1 0.538 13 0453 13 0377 13 0317 13 0276 13 0255 13 0249
14 1 0 1 0.163 1 0.304 1 0429 14 0.462 14 0364 14 0276 14 0197 14 0125 14 0060 14 0
TABLE VII TABLE X
AVERAGE SIMILARITY INDEX FOR THE 33-NODE NETWORK PARETO OPTIMAL SOLUTIONS RANKED USING TOPSIS
FOR THE TPC DISTRIBUTION SYSTEM
sol. # ct
1 0.583 solufion # su.mlarlty losses ] SAIFI
) 0.806 index [kW] [failures/year|
’ 3 0.8994 471.4274 0.7884
3 0.827 4 0.8875 471.6187 0.7883
4 0.817 2 0.8595 470.3662 0.7912
5 0.753 1 0.1125 470.0562 0.8091
6 0.749
7 0.744 R
8 0.696 1 T T Y T M
9 0.649 1 2 3 4 5 6 7|8 (>|2 6|l 60 5|9 slx 5'7 5'6 5'5 5'4 53
1
10 0.650 ‘
11 0.646 1 Ij H—t—o
72 71 70 69 68| 67 66 65 64 63
12 0.608
13 0.521 ol | I R T R R
14 0417 17 IIS Ft) 2'0 le 2|2 F:& 2'4 2|() 2'7 81 80 79 7I8 7|7 7|6 7'5 7|4 73

TABLE VIII
PARETO OPTIMAL SOLUTIONS OBTAINED AFTER THE VALIDATION
STAGE FOR THE TPC DISTRIBUTION SYSTEM

] losses SAIFI
solution # [KW] [failures/year]
3 471.4274 0.7884
4 471.6187 0.7883
2 470.3662 0.7912
1 470.0562 0.8091
TABLE IX

OPEN BRANCHES FOR THE TPC DISTRIBUTION SYSTEM SOLUTIONS

solution # open branches

1 7-8,14-15,37-38,43-44,46-47,70-71,80-81,93-94,6-
62,13-49,16-21,19-30,32-37

2 7-8,14-15,38-39,43-44,46-47,70-71,80-81,93-94,6-
62,13-49,16-21,19-30,32-37

3 7-8,38-39,43-44,46-47,70-71,80-81,93-94,6-62,13-
49,15-86,16-21,19-30,32-37

4 7-8,37-38,41-42,46-47,61-62,70-71,80-81,93-94,13-

49,15-86,16-21,19-30,32-37

solutions. From Table XII, the highest value of the average
similarity index corresponds to the solution #2.

8 85 84 83 82

39 40 41 42 43 46 47 94 93 92 91 90 89 88 87

48 49 50 51 52

Fig. 5. Radial configuration for the top-ranked solution (TPC DS).

D. Computational Performance

The simulations were performed using a workstation with
two 6-core processors with a frequency of 3.46 GHz and 96 GB
of RAM, running a 64-bit version of Windows. The computa-
tional statistics of the multi-objective optimization method for
the investigated test cases are presented in Table XIII.

The computational time of the validation stage as well as the
application of the TOPSIS method are negligible (less than 1 s in
total). Due to the implementation of the acceleration algorithms,
the only optimization sub-problems that are actually solved pro-
vided non-dominated solutions.

The computational burden for the GA is reported in
Table XIV. By comparing the total time of the AUGMECON
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TABLE XI
SENSITIVITY ANALYSIS OF THE RANKING W.R.T. THE OBJECTIVE WEIGHTS FOR TPC NETWORK

losses

w
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

rank sol.# Cf; sol# Cf sol.# Cf; sol# Cf sol.# CY sol# Cf solL# Cf sol.# CY sol# Cf sol.# Cf sol# CF
1 4 1 3 0.987 3 0.972 3 0.954 3 0.930 3 0.899 2 0.858 2 0.855 2 0.847 2 0.825 1 1
2 3 0995 4 0.986 4 0.969 4 0.949 4 0.922 4 0.888 3 0.856 3 0.793 3 0.692 1 0.533 2 0.803
3 2 0.861 2 0.860 2 0.861 2 0.860 2 0.860 2 0.860 4 0.840 4 0.772 4 0.664 3 0.501 3 0.122
4 1 0 1 0.014 1 0.031 1 0.052 1 0.078 1 0.113 1 0.160 1 0.228 1 0.336 4 0.467 4 0

TABLE XII TABLE XV

AVERAGE SIMILARITY INDEX FOR THE TPC NETWORK

sol. # C
1 0.230
2 0.850
3 0.791
4 0.769

TABLE XIII
COMPUTATIONAL CHARACTERISTICS OF AUGMECON FOR THE TEST CASES

network 33 nodes TPC
Optimality gap (%) 0 0
#Equations/sub-problem 656 1727
#Variables/sub-problem 6172 24959
#Discrete Variables/sub-problem 37 96
#Grid Points 200 200
Total Time (s) 192 512
TABLE XIV
COMPUTATION TIME OF GA FOR THE TEST CASES
network 33 nodes TPC
mean value [s] 281 2138
standard deviation [s] 51 531

with the computational burden of the GA, it is clear that AUG-
MECON is convenient in terms of computation time.

The number of breakpoints used in order to approximate
the squares of the active and reactive power using the SOS2
technique directly affects the computational performance of the
method. Like any other approximation technique, perfunctory
selection of the number of the breakpoints may affect the result.
Nevertheless, to overcome such problems several selection
strategies have been proposed [42] in order to optimally select
the number and the coordinates of the breakpoints.

In the presented study, the number of breakpoints that are
used has an impact only on the values of the total losses.

The SAIFI and SAIDI results are clearly not affected since
they do not involve the values of active and reactive power in
their calculation.

AENS depends in a linear way on the active power flow
through the branches. Since the SOS2 approximation applies
only to the nonlinear components, the value of AEN S is not
affected by the SOS2 approximation.

To examine the potential effects of the SOS2 approximation,
several indicative tests have been performed on the 33-node
system using the active power losses and SAIFI minimiza-
tion objectives. One thousand grid points have been used in

COMPUTATIONAL TIME AND APPROXIMATION ERROR TRADE-OFF OF THE
SOS2 APPROXIMATION

step number of absolute average error time
[kW] breakpoints [%] [s]
5 751 (reference case) 623
15 501 0.004 345
25 301 0.020 186
50 151 0.092 109
100 76 0.452 64
150 51 0.949 38

order to construct the Pareto optimal set. The active (reactive)
power flows have been evaluated in the range from —3750 kW
(kvar) to 3750 kW (kvar). The results are presented in Table XV,
with the absolute average error of the approximate active power
losses calculated by taking the case with 5-kW step as the ref-
erence case.

It is noticed that for relatively insignificant errors the compu-
tation time is significantly reduced. Nevertheless, the selection
of the appropriate number of breakpoints depends on the spe-
cific problem. In case significant errors appear it would be advis-
able to develop a break-point selection technique. The number
of the Pareto optimal solutions discovered and the respective ra-
dial network topologies are the same for all the cases. It should
be stated that several linear AC optimal power flow models [30]
explicitly utilize SOS2 variables to approximate quadratic func-
tions because the SOS2 technique does not introduce any extra
binary variables to the optimization problem and the approxi-
mation errors are generally considered as minor.

V. CONCLUSIONS

In this study, the DS radial reconfiguration problem was for-
mulated as a MMP problem using a MILP approach. The ob-
jectives considered were the minimization of the active power
losses and the minimization of commonly used reliability in-
dices (SAIFI, SAIDI, and AENS), which were explicitly
treated within the MILP formulation. To solve the multi-objec-
tive problem, firstly, an exact technique was employed, namely,
the AUGMECON in order to generate an initial set of non-dom-
inated solutions. At that stage, a reduced network representa-
tion was enforced disregarding power flow constraints. To val-
idate the results, the resulting configurations were evaluated
in terms of a backward/forward sweep load flow algorithm. In
that way, an updated set of non-dominated solutions was gen-
erated comprising only feasible (e.g., in terms of bus voltage
and branch current limits) solutions and actually non-dominated
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solutions after the application of the load flow algorithm. Com-
parisons with a reference Pareto front (the complete Pareto front
resulting by exhaustive search on the 33-node network, and the
best-known Pareto front obtained from a GA procedure for the
TPC network) have been conducted. Notwithstanding the use
of the SOS2 approximation in the calculation of the total losses,
the non-dominated solutions obtained by the proposed approach
have proven to be Pareto optimal and to be located on the ref-
erence Pareto front. After the updated set of non-dominated so-
lutions has been constructed, running TOPSIS considering the
DM preferences has ranked the Pareto front solutions.

Furthermore, a sensitivity analysis regarding the ranking of
the solutions with respect to the objective weights has been car-
ried out, and a new index called average similarity index has
been introduced. This sensitivity analysis may be useful to rep-
resent the transition of the top-ranked solutions in function of
the weights adopted.

The overall approach used in this paper is then able to provide
the DM with an effective solution indicating the trade-off among
the different objectives. The method developed in this paper can
only be applied to balanced network operation. The tool pro-
duced from the presented study is structurally complete and its
use can be expanded to incorporate further objective functions,
for example, taking into account the effects of distributed energy
resources (with energy storage systems and DG). Furthermore,
the inherent stochasticity of generation and load can be explic-
itly introduced through appropriate indices. The aforementioned
issues will be addressed in future works.

APPENDIX

This appendix provides the proof that the AUGMECON
method produces only non-dominated solutions. The interested
reader may refer to [34] for the rigorous mathematical treatment
of the method.

Proof: Given a general MMP problem in which
f1(x),...,£,(X) are the p objective functions to be (without
loss of generality) maximized, S the feasible space and T the
vector of decision variables, the classical £-constraint method
is described by (A1) where the RHS is varied in order to obtain
the efficient solutions of the problem:

max f; (%)
s.t.

(AD)

A solution of the problem (A1) is Pareto optimal if and only
if the constraints of the p — 1 objective functions are binding. In
case of alternative optima, an optimal solution of the problem is
not in fact Pareto optimal.

The AUGMECON addresses this problem by transforming
the objective function constraints to equalities using positive
continuous slack variables:

max (f1(X)+e-(sa+---+5p))
s.t.
fQ()_() — 89 — €9, (A2)

f

p(X) —sp = ep,
€8, eec[1075,1077].
To prove that the formulation (A2) produces only Pareto op-
timal solutions, let us assume that (A1) has alternative optima
and one of them (x’) dominates the optimal solution X obtained

from (A2). This means that the vector (z1,e2+82,...,e, +5p)
is dominated by (z1, ez + 85, ..., e, +s}), that in turn is equiv-
alent to
ez + 83 < ex + 85,
(A3)

!
ep +8p <ep+ s

with at least one strict inequality. It is to be stated that z; is
the same for (A1) and (A2). The sum of the relations presented
above turns into: >_7_,s; < >_b_, si. This contradicts the ini-
tial assumption that the sum of s; is maximized by the optimal
solution of (A2). Hence, it is concluded that there is no solution
that dominates X.
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