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Abstract—In a multienergy system, there are different types of
dependencies among the energy carriers. Internal dependencies
refer to possible changes in the energy source in the presence of
energy converters and storage, and are managed by the system
operator through the control strategies applied to the equip-
ment. External dependencies (EDs) are due to the choice of the
energy supply according to customer preferences when alterna-
tive solutions are available. This paper introduces a new model
of EDs within a multigeneration representation based on energy
hubs. EDs are addressed through a stochastic model in order to
take into account the possible uncertainty in the customers’ deci-
sions. This model is then used to introduce carrier-based demand
response (DR) in which the user participates in DR programs
aimed at promoting the shifting among different energy sources
by preserving the service provided to the end users. The results
obtained from the new model in deterministic and stochastic
cases indicate the appropriateness and usefulness of the proposed
approach.

Index Terms—Carrier-based demand response (CBDR),
distributed energy resources (DERs), energy shifting, internal
and external dependency model, operational flexibility, smart
multienergy system.

NOMENCLATURE

Acronyms

AB Auxiliary boiler.
CBDR Carrier-based demand response.
CHP Combined heat and power.
CS Carrier share.
DER Distributed energy resource.
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DR Demand response.
ED External dependency.
HS Heat storage.
PDF Probability density function.

Subscripts

e Electricity.
g Natural gas.
h Heat.
t Time interval.
s Scenario.
α, β, ω Generic energy carriers.
D Dependent output.
I Independent output.

Superscripts

CB Participating demand in a CBDR program.
dd Demand dependency.
in Input energy to the micro-multienergy system.
CS Customer choice share.
n Indicator of new matrix or variable.
o Indicator of traditional matrix.
out Indicator of the variables that determine the share

of energy demand from input energy carriers.
r Energy storage.
r(+), r(−) Energy storage charging and discharging.

Parameters and Variables

es, ės Energy stored amount and variation.
Q, q Heat energy.
q̇ HS level difference in two consecutive time

intervals.
L, l Energy demand.
p Energy input.
R Maximum charge and discharge rate of HS.
v Continuous variable determining the share of

each energy element from input energy carriers
or share of each carrier from dependent demand.

W, w Electrical power.
x Uncertain variables.
�, γ Heat to power ratio.
η Efficiency.
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π Input energy carrier price.
ρ Probability.
μ Expected (mean) value of uncertain variables.
σ Standard deviation.
ės (Column vector) changes in stored energy.
p (Column vector) input energy.
λ (Column vector) output energy.
C Coupling matrix.
S Storage coupling matrix.
Remark 1: An underlined (overlined) variable is used to

represent the minimum (maximum) value of that variable.
Remark 2: Capital letters denote parameters and small ones

denote variables.
Remark 3: f is the function of the considered variables.

I. INTRODUCTION

A. Motivation

THE INTRODUCTION of distributed energy
resources (DERs) is taking a significant part in

forwarding the sustainable development and hedging the
problems occurring to future energy portfolios [1]. Being
co-related to both loads and energy supply system, DERs can
increase the opportunities to enhance the services offered to
loads as well as taking more benefits of loss reduction by
changing the way of power transfer [2]. As the penetration
of technology grows among the devices that are used by
end users, the demand side will be more capable and eager
to participate in advancing the sustainable development.
This process does not only help the progress of sustainable
development, but also will bring more technical and economic
advantages to end users.

However, utilization of these resources for achieving the
sustainable development objectives necessitates the employ-
ment of smart grids in order to convert this potential possibility
into actual solutions [3]. Facilitating the bi-directional rela-
tion between the user and the system operator makes it
possible to utilize and operate DERs at different levels [4].
In this regard, the technological development and commer-
cialization is increasing the availability of technologies such as
small-scale CHP units and energy storage systems, which are
introduced in distributed multigeneration (DMG) systems [5]
to enhance the flexibility of serving a multienergy demand.

B. Literature Review

Various researches have been conducted about modeling and
studying multienergy networks. Geidl et al. [6] proposed an
integrated model for this kind of networks as an energy hub.
Following this model, further studies and model developments
have been surveyed, some of which have been summarized in
Table I [6]–[35].

As shown in Table I, the references proposing energy hub
models consider the partitioning of the multienergy system
into two parts: 1) energy hubs; and 2) interconnectors. In these
studies, the input and output energy carriers are considered
individually.

TABLE I
RESEARCH DOMAINS IN ENERGY HUB SYSTEM STUDIES

Regarding the modeling of the system, two main approaches
have been previously adopted for comparing the solutions in
multienergy networks.

The first group of researchers does not consider the demand
side energy converters and models the network just before end
use [6], [36]. The second group [19] models networks with
energy converters at the end service level with high resolution,
but in a very limited area such as a household.

In [36], a matrix model is proposed considering the same
input and output vectors, showing how the models of the indi-
vidual components can be aggregated to obtain the matrix
model of the overall energy system. However, as the pene-
tration of smart technologies grows in the system, the input
and output vectors of the multienergy system will no longer be
only composed of individual components [37]. In fact, various
devices that can use different sources of energy for producing
the same output service are employed by the end users.

Then, the output of the multienergy system will depend on
these devices and the consumers’ behavior on utilizing them.
As a result, the effects of the consumers’ behavior and the
randomness associated to it have to be considered.

C. Problem Description and Contributions

This paper addresses the presence of the demand that can be
supplied by various types of carriers, its effects on multienergy
system modeling, and the exploitation of this type of demand
within DR programs.

The basic concept considered in this paper is the one of
dependent demand, that is, the demand referring to a specific
service that can be covered by producing the related energy
from different energy carriers. Examples of dependent demand
can be indicated for energy systems of different size. In a sim-
ple case, the required heat of a typical house can be provided
both by electrical and gas-fired heaters. The amount of gas
or electricity required for the system depends on the user’s
choice of the energy carrier in providing its dependent demand.
Similar situations may occur in larger buildings where more
persons are living or operating, by considering the possibility
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of obtaining services such as water heating, cooking, and air
conditioning (with multiple points in which these services can
be provided) from multiple energy carriers, leaving the end
user the possibility of choosing the energy carrier to supply
the dependent demand.

The possibility of providing services from various energy
carriers is linked to the availability of different energy sup-
ply systems in the same area. This may seem impractical.
However, there are situations in which this kind of solu-
tions are present or expected in real-life situations. The most
remarkable situation is the one in which the trend of energy
supply in the region in which the demand is located is chang-
ing, for instance because the energy mix in that region has been
varied by the availability of new energy sources (e.g., from
renewable generation) or by obsolescence of the existing
power plants that are replaced with new technologies using
different energy carriers. This situation includes for example
either change from power to gas (leading to “less-electric”
demand, or from gas to power (leading to “more electric”
demand) [38]. In these cases, the end users can be induced to
change the technologies they are using. However, the end users
could decide to keep the previously used technology and inte-
grate them with a new one, with the prospect of possible usage
of both technologies depending on their convenience, e.g., to
manage the case of shortage of energy supply for one energy
carrier or large price fluctuations for the energy carriers that
can be used to provide the same service. The demand side can
change the source of providing the same service based on each
energy carrier’s price, availability of technologies, or only its
preference. In the presence of multiple end users acting on the
same system, the customer choices can be applied in a random
way, so that the dependent demand becomes stochastic.

The system operator can set up DR programs aimed at tak-
ing benefits from this flexibility to manage the dispatch of
the energy carriers within the multienergy system. In [39],
it is shown how DR can be activated to promote changes
in the demand behavior in response to changes occurred as
exogenous stimuli (supply carriers’ price variations, or specific
incentives), defining a procedure according to which no cus-
tomer suffers from these changes. In [40], it is indicated how
DMG can be exploited to reduce the electricity input from the
upstream network. This possibility is discussed on the basis of
the concept of electricity shifting potential in the prospect of
using DMG to provide real-time DR. In [41], an electric heat
pump is used to provide heating and cooling to a multienergy
system, switching the heating/cooling from electric heat pump
to another equipment as a DR program.

This paper considers that the dependent demand can be
totally or partially made available by the end user to par-
ticipate in specific DR programs. For this purpose, the fol-
lowing possibilities are defined for the dependent demand
usage.

1) Carrier Share (CS): The user decides which energy car-
rier is used for the part of dependent demand that does
not participate in DR programs.

2) Carrier-Based DR (CBDR): The user decides which
energy carrier is used for the part of dependent demand
that participates in DR programs. This means that,

if needed, the system operator can send a signal to the
customer so that the energy carrier for providing a spe-
cific service will be shifted to another one, instead of
just shedding the service.

CBDR is applied to change the type of energy supply from
different sources (including energy storage) in such a way that
the service is provided, and hence the level of comfort and cus-
tomers’ satisfaction remain unchanged. It is assumed that on
the demand side the technology of having dependent demand
does exist. If the end user agrees to participate in the CBDR
program, whenever the operator needs less/more usage on one
energy carrier, it sends a signal to the end users to change
the source of energy carrier (from one type to another) by an
amount that does not affect the service provided. In practice,
the network operator can communicate with the consumers to
motivate them for changing their consumption pattern during
time. Facilitating this communication also makes an oppor-
tunity for implementing various DR programs. Relating to
the incentives and affected satisfaction of consumers in the
DR process, the consumers’ response to these programs can
be different. One-way communication and sending signals for
encouraging the participation of consumers in DR programs
is already achievable [41]–[43].

In the light of the concepts indicated previously, the contri-
butions of this paper are threefold.

1) Represent customer’s choice in the multienergy system
model to increase flexibility, by extending the matrix
model of the multienergy system to incorporate the
effects of dependent demand.

2) Extend the degrees of freedom for applying DR by
proposing a CBDR program.

3) Assess the stochastic behavior of the demand side
for selecting the carriers by means of implementing
scenarios incorporating CBDR programs.

D. Paper Organization

The rest of this paper is organized as follows. In Section II,
the dependent demand is categorized by identifying internal
and external dependencies. In Section III, a comprehensive
model is proposed for energy networks with multienergy sys-
tem dependency. In Section IV, the modeling of a local energy
network considering the EDs of the network and its stochas-
tic operational model is determined. Section V discusses the
uncertainty characterization of ED. Section VI explains the
results of implementing the proposed model on a test system.
The conclusion is presented in the last section.

II. INTERNAL AND EXTERNAL DEPENDENCIES

In a multienergy system, the dependencies can be divided
in two main categories: 1) internal dependencies; and 2) EDs.

The internal dependencies refer to the relations between
input and output energy carriers due to the presence of energy
converters existing in the multienergy system and controlled
by the system operator (for example, deciding the energy flows
among multiple equipment belonging to a multigeneration sys-
tem, on the basis of a specified control strategy or optimization
objective [14], [36]).
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Fig. 1. Structure of DER supply and related dependencies in serving
multienergy demand.

Conversely, the EDs are mainly due to actions not depend-
ing on the network operator, which may have effects on the
way the multienergy demand is served. These actions generally
depend on the user’s preferences triggered by DR programs
and incentives established by the regulator.

The considerations of the EDs also depend on the penetra-
tion level of the distributed energy converters located at the
user’s side and directly activated by the customers for chang-
ing the energy supply (e.g., electrical and gas boilers for hot
water production, and local management of storage).

The framework representing the relations of various ele-
ments in the multienergy system and the position of internal
dependencies/EDs is shown in Fig. 1.

As the dependent demand causes an ED in the system, it
will affect the conventional models used for the multienergy
systems.

Two main references that have focused on modeling the
dependencies are [6] and [44]. In these references, the depen-
dency between carriers is considered through the coupling
matrix.

Furthermore, Kienzle et al. [25] addressed the model of the
external time dependency arising by modeling the stored heat
demand as DR in a residential area.

However, the survey of the literature approaches shows that
a structured view of the dependencies among the energy car-
riers, taking into account the role of the user and the related
preferences, has not been provided yet. Hence, in this paper,
the ED on the demand side is modeled as a specific module in
the multienergy system, which has not been tested in previous
studies, posing a new contribution. In addition, the stochastic
nature of consumer preferences is addressed. This will bring
higher levels of flexibility to the energy usage in the network,
while reducing operation costs.

III. COMPREHENSIVE ENERGY SYSTEM MODEL

Energy systems have a multilayer nature. A possible repre-
sentation with three main layers is indicated in Fig. 2, namely,
macro-multienergy system (referring to external energy sys-
tems and networks), micro-multienergy system (i.e., the local
system under analysis), and multienergy demand.

Fig. 2. Energy system comprehensive module considering internal depen-
dencies and EDs.

The energy system analysis is carried out by assuming
that the services requested by the user and the associated
multienergy demands are known.

Looking at the multienergy system equipment, two main
elements exist in the energy system model: 1) energy con-
verters; and 2) energy storages. In this section, the matrix
model for these elements is presented, highlighting the effects
of the possible interdependencies among the energy carriers.
The time scale used for the representation depends on the aver-
aging time interval with which the data are available. Without
loss of generality, the subscript t is used here to scan the time
intervals.

Thereby, this model is efficient both on the operation
timescale, provided that appropriate control or DR signals are
available in a relatively short term (from minutes to hours)
to change the equipment set point (thus affecting the internal
dependencies) or to induce changes in the customers’ pref-
erences as EDs, and in long-term planning of local energy
networks.

A. Energy Converter Model

In the classical energy hub model, the overall system is rep-
resented by a coupling matrix C that converts the input energy
carriers, vector p, e.g., natural gas, electricity, and district
heating, into output energy services, vector λ, like electricity,
cooling and heating, and mechanical power

[λ] = [C]
[
p
]
. (1)

Based on Fig. 2, the expansion of (1) showing the relation
between input and output carriers is modeled as

⎡

⎢⎢⎢
⎣

Lα,t

Lβ,t
...

Lω,t

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

Cαα · · · Cαω

Cβα · · · Cβω

...
...

Cωα · · · Cωω

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

pα,t

pβ,t
...

pω,t

⎤

⎥⎥⎥
⎦

. (2)

Each element of the matrix C denotes the conversion of
one carrier into another and is composed of two categories of
parameters: the first category includes coefficients depending
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on physical characteristics of the system and of the energy
converters, such as the efficiencies (ηα).

The second category includes the decision variables, here
denoted as weighted energy contribution variables (vα,t), which
indicate the energy distribution among the energy converters
in (3). In fact, these are continuous variables that determine the
share of each energy carrier in the total energy demand. Only
in very simple cases the decision variable can be considered as
binary, representing a switch between two possible alternatives
to supply the demand needed for a given service by using two
energy carriers. Hence, the entries of the matrix C can be
expressed as

Cαβ = f (v, η). (3)

The classical model encompasses the presence of the inter-
nal dependencies referring to the energy CS among different
equipment, in which the decision variables (e.g., the dispatch
factors indicated in [6]), represent degrees of freedom to deter-
mine the energy flows in the multienergy system and can be set
up as a result of optimization procedures run by considering
specific objective functions [6], [38]. However, this model for-
mulation does not include the representation of the customer
choice affecting the energy carriers’ usage. This representation
is incorporated here in the ED module highlighted previously
in Fig. 2.

The proposed extension of the model shows that, besides
consuming a certain amount of each energy carrier at each
time interval (Lα,t, Lβ,t, etc.), the multienergy demand has
the ability to receive a defined amount of energy (Lαβ,t) from
different carriers to supply the required service.

The weighted energy contributions depending on the cus-
tomer preferences in the ED module are equivalent to the
dispatch factors considered in the model representing the
internal dependencies.

Dependency between outputs is added to the demand vec-
tor through one or more additional entries, which increase
the number of rows of the coupling matrix (4). It should be
noted that these added lines do not represent actual outputs,
but virtually illustrate the dependency in output

⎡

⎢
⎢⎢⎢⎢
⎣

La,t

Lb,t
...

Lω,t

Lαβ,t

⎤

⎥
⎥⎥⎥⎥
⎦

=

⎡

⎢
⎢⎢⎢⎢
⎣

Caa · · · Caω

Cba · · · Cbω

...
...

...

Cωα · · · Cωω

Cαβα · · · Cαβω

⎤

⎥
⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

pα,t

pβ,t
...

pω,t

⎤

⎥⎥⎥
⎦

. (4)

Hence, the output vector λ in the proposed model (column
vector containing the terms Lα,t, Lβ,t, etc.) can be divided into
two sections as in (5), with rows indicating independent output
carriers (λI) and rows introducing dependency in the out-
put (λD). The same approach can be performed on the coupling
matrix. Therefore, the matrix model will have new rows that
make it different with respect to the one used in [7] and [27]

[λ] =
[

λI

λD

]
=
[

CI

CD

] [
p
]

(5)

where
CI traditional coupling matrix that states the conversion

of independent inputs into independent outputs;

CD matrix showing the share of the independent inputs in
providing dependent demand;

p column vector containing the input variables.
An application example is illustrated in Section III.

B. Energy Storage Model

As Arnold and Andersson [9] and
Kienzle and Andersson [22] have explained, the role of
energy storages can be modeled through some changes in the
coupling matrix and the input energy vector. Regarding the
EDs, the fact that the user can resort to individual storages
causes the definition of an extended input vector (pn) with
respect to the input vector p used in the case where no
storage exists.

On the one hand, the amount of energy consumed from
storages (vector ės) is added to the input vector. On the other
hand, the coupling matrix of the storage (S), which represents
how changes in the amount of energy stored will affect the
system output, is added to the total system coupling matrix.
Hence, the combined model is shown

[λ] = [
C −S

] [pn

ės

]
. (6)

In the modified model, ĖS is the change in the stored energy
and can be computed from (7) and (8) by considering the
charge/standby conditions or the discharge conditions

ėsa,t = esa,t − esa,t−1 (7)

ηr
α =

{
ηr(+)

α , if ĖSα,t ≥ 0 (Charge/Standby)

1
/

ηr(−)

α
, if ĖSα,t < 0 (Discharge).

(8)

By decomposing the storage coupling matrix S into its com-
ponents SI , showing changes of independent output versus
changes in the stored energy, and SD, showing changes of
dependent output versus changes in the stored energy, the
matrix formulation becomes

[
λI

λD

]
=
[

CI −SI

CD −SD

] [
pn

ės

]
. (9)

IV. LOCAL ENERGY SYSTEM STOCHASTIC

OPERATIONAL MODEL

In order to show an application of the proposed model,
a typical local network model is shown in Fig. 3, with CHP
unit, AB, and HS.

The input carriers of the system are electricity and gas,
while the output carriers are electricity, gas, and heat. The ED
between gas and electricity carriers in this network is consid-
ered through the demand dependency module ED in the output
(with output variable Leg,t). The EDs due to the behavior of the
consumers are not deterministic; therefore, the related uncer-
tain variables are considered in a scenario-based stochastic
model, in which the subscript s represents the scenarios.

The typical scenarios considered are the CS indicated in
Section I-C when no DR program is defined, and the CBDR
scenarios considering the shifting between energy carriers
in order to maintain the customers’ satisfaction through the
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Fig. 3. Typical local energy network model considering the energy carriers
dependency.

definition of DR programs. It is assumed that some cus-
tomers agree that their demand would be participating in this
type of DR.

CS is based on the user’s decision on which multienergy
carrier has to be used for the part of dependent demand that
does not participate in CBDR programs, while the remain-
ing part of the dependent demand is available to contribute
to CBDR.

The considerations on uncertainty and the details of the sce-
narios are described in Section V. The energy dispatch between
the various elements is described by using the weighted
energy contribution variables v, for both internal and EDs.
The links among the weighted energy contribution variables
are indicated hereafter.

Based on the proposed model in the previous section, the
mathematical model of this network is shown
⎡

⎢
⎢⎢
⎣

vout
e,t,s vCHP

g,t,s ηCHP
e vout

e,t,s 0

0 vCHP
g,t,s ηCHP

h + vAB
g,t,s ηAB

h
1/

ηr
e

0 vout
g,t,s 0

vdd
e,t,s vdd

g,t,s + vdd
e,t,s vCHP

g,t,s ηCHP
e 0

⎤

⎥
⎥⎥
⎦

⎡

⎢
⎣

win
t,s

gin
t,s

q̇HS
t,s

⎤

⎥
⎦ =

⎡

⎢⎢
⎣

Le,t

Lh,t

Lg,t

Leg,t

⎤

⎥⎥
⎦.

(10)

It should be noted that in this paper the model is studied in
steady state, namely, the time step of analysis is considered to
be sufficiently long to assume that all the equipment (also the
slower thermal elements on the demand side) have concluded
their transient period and have reached their steady state. As
a result, the dynamics on the demand side can be neglected.

The local energy network is assumed to consist of small
residential smart buildings, in which indicatively the minimum
time step for analyzing successive steady-state conditions can
be of the order of minutes. In any case, the time step used
for the calculations in this paper is longer (hours), so the
representation of the equipment dynamics is not needed.

A. Objective Function

The objective function in operating this system is to mini-
mize the costs of providing the required amount of gas energy

input gt,s and electrical energy input wt,s, taking into account
the costs per unit of energy πe,t and πg,t for electricity and
gas, respectively.

This model has been formulated to obtain the total expected
cost for various scenarios of dependency in the system

Min
∑

s

ρs

∑

α

∑

t

(
wt,s πe,t + gt,s πg,t

)
(11)

with

ρs =
{
ρCB

s , ρCS
s

}

where ρCB
s and ρCS

s are respectively the probabilities of being
in the CBDR or in the CS scenarios. The details of the
scenarios are explained in Section V.

B. Operational Constraints

The constraints are generally expressed in terms of capac-
ity. As such, in order to check the constraints it is needed
to express the average power values in the relevant time
subinterval.

Let us consider for each hour the number nτ of uni-
formly spaced time subintervals (e.g., nt = 4 for 15 min
subintervals) [28].

Hence, the energy input corresponds to the average power
as in

wt,s = wt,s/nt, gt,s = gt,s/nt. (12)

The same relation holds between any average power and
energy quantities. The constraints for system operation are
formulated as follows.

1) Input Carriers Constraints: Each energy carrier has
a supply limit that may be due to the power amount
from the supply source or power transmission limits

0 ≤ wt,s ≤ W
in
, 0 ≤ gt,s ≤ G

in
. (13)

2) Operational Constraints of the CHP Unit: Regarding
manufacturing characteristics of the CHP unit, they
face limits in the amount of electrical power output
wCHP

t,s or heat power output qCHP
t,s . Furthermore, the CHP

unit should be operated in the allowed heat to power
ratio zone

WCHP ≤ wCHP
t,s ≤ W

CHP
(14)

QCHP ≤ qCHP
t,s ≤ Q

CHP
(15)

γ CHP
t,s = qCHP

t,s

wCHP
t,s

(16)

�CHP ≤ γ CHP
t,s ≤ �

CHP
. (17)

3) Operational Constraints of the Auxiliary Boiler: Heat
output from the AB has some capacity limits

QAB ≤ qAB
t,s ≤ Q

AB
. (18)

4) Operational Constraints of Heat Storage:
∣∣
∣q̇HS

t,s

∣∣
∣ ≤ RHS

h
(19)

QHS ≤ qHS
t,s

≤ Q
HS

. (20)
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5) Constraints on the Weighted Energy Contribution
Variables:

0 ≤ v ≤ 1 for all weighted energy contribution

variables (21)

vdd
e,t,s + vout

e,t,s = 1 (22)

vCHP
g,t,s + vAB

g,t,s + vdd
g,t,s + vout

g,t,s = 1. (23)

C. Model of External Dependency

As shown in the proposed model, the EDs are modeled in
a block added to the rest of the micro-multienergy system
model. In fact, this block is the interface between the micro-
multienergy system and the output demand. However, in the
proposed model, the dependency that actually happens on the
demand side is modeled as a part of the micro-multienergy
system. The block is added as a module in the model (Fig. 3).
It should be noted that this module does not give a physical
outcome, but it helps the operator of a multienergy system to
have an insight from possible customers’ choice of carriers. In
a real network, this module can have outputs such as data or
information signals that are sent to the operator 24 h before
the operation day. Nevertheless, in this paper, the mathematical
model for investigating the compatibility of the model is pre-
sented. Based on these explanations, the dependency module
demonstrates that part of the multienergy demand can utilize
both electricity and gas carriers to provide the required service.
In order to deal with the dependency between the carriers in
the system model, two weighted energy contribution variables
are used, namely, vdd

e,t,s and vdd
g,t,s, stating the share of depen-

dent energy demand in the output of each carrier (electricity
and gas, respectively)

f
(

vdd
e,t,s, vdd

g,t,s

)
= Leg,t. (24)

In (24), it is shown that the output dependent demand is
a function of the variables of the two carriers (electricity and
gas). The ED variables illustrate the dependent demand’s share
in usage of each carrier. Thus, it is necessary to balance them
with some coefficients and then exploit them in the model.

The following new weighted energy contribution variables
in the output show the share of each carrier in demand
provision:

vdd,n
e,t,s =

(
win

t,s + gin
t,s vCHP

g,t,s ηCHP
e

Leg,t

)

vdd
e,t,s (25)

vdd,n
g,t,s =

(
win

t,s

Leg,t

)

vdd
g,t,s. (26)

As it is shown in (25) and (26), a new variable is defined to
determine the share of dependent demand from electricity and
gas, respectively. These equations show the share of dependent
demand from the total input energy carriers. In other words,
vdd,n

e,t,s shows what amount of dependent demand is served by
electricity. The same can be interpreted for vdd,n

g,t,s. Besides,
these new variables are used to avoid the multiplication of
weighted energy contributions and make the problem linear
with respect to the decision variables.

Furthermore, it is clear that there is some equipment that
enables the possibility of dependent demand. However, the
equipment that has shares on energy contribution of the EDs
is not ideal, and may waste some part of energy through
the energy conversion process. Therefore, (27) represents the
limit on the amount of weighted energy contribution variables
depending on this block. This will ensure that the amount of
energy that is assigned to each carrier is obtainable by the
related equipment

vdd,n
e,t,s + vdd,n

g,t,s ≥ 1. (27)

V. UNCERTAINTY CHARACTERIZATION OF INTERNAL

AND EXTERNAL DEPENDENCIES

The consumers’ behavior for utilizing the mentioned depen-
dencies is uncertain from the operator’s point of view.
Therefore, a scenario-based approach is adopted to charac-
terize this behavior.

This section describes the model of the uncertainties on
CBDR and energy carriers share.

A. Uncertainty of Carrier-Based Demand Response

Let us assume that the local energy network operator can
send signals at each hour to its consumers to inform them on
the desirable energy dispatch. The consumers can respond to
this request based on economic and social behavior. One of the
main stimuli that motivate consumers to participate in CBDR
programs is the presence of incentives that can be based on
price signals.

Some reports (see [45], [46]) have focused on modeling the
customers’ response during a DR event and obtaining the DR
baseline error/accuracy.

Customers’ response uncertainty refers to the percentage
of consumers who participate in CBDR programs. In other
words, consumers’ CBDR acceptance is the main source of
uncertainty considered in the ED modeling.

In this paper, a scenario-based approach is utilized to inves-
tigate the effect of the customers’ response uncertainty on the
operator’s behavior.

Another important uncertainty regards the consumers who
do not participate in CBDR programs, thus their demand is
individually controlled, contributing to the terms referring to
the internal dependency.

This uncertainty represents the probabilistic nature of con-
sumers’ behavior to select the carriers for supplying their own
demand (Fig. 4).

Equations (28)–(33) represent the share of each carrier for
providing CBDR and individually controlled demand

lCB
eg,t,s = Leg,t vCB

t,s (28)

where vCB
t,s represents the variable indicating the customers that

agree to participate in CBDR. Hence, lCB
eg,t,s determines the part

of dependent demand that takes part in CBDR.
The share of electricity and gas demand from total depen-

dent demand is expressed as

lCB
eg,t,s vdd,n

e,t,s = lCB
e,t,s (29)

lCB
eg,t,s vdd,n

g,t,s = lCB
g,t,s. (30)
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Fig. 4. Share of demand participation variables in dependent demand.

The choice of the customers who do not participate in
CBDR from electricity and gas (that is, the users with CS
dependent demand) is represented in the following equations,
the variables vCS

e,t,s and vCS
g,t,s represent the share of electricity

and gas, respectively
(

Leg,t − lCB
eg,t,s

)
vCS

e,t,s = lCS
e,t,s (31)

(
Leg,t − lCB

eg,t,s

)
vCS

g,t,s = lCS
g,t,s (32)

vCS
e,t,s + vCS

g,t,s ≥ 1. (33)

In addition, the amount of dependent demand in the study
(demand dependency percentage) is calculated through the
following equation:

dd% = Leg,t

Leg,t
. (34)

B. Modeling the Uncertainties of CBDR and Carrier Share

The model of the local energy system should estimate the
uncertain parameters of probabilistic consumers’ behavior by
past statistics data.

To create appropriate scenarios to model the mentioned
uncertainties, several methods based on time-series (see [47]),
artificial intelligence and evolutionary algorithms (see [48])
can be utilized.

In this paper, the uncertainties are modeled as multiple
different scenarios. Then, a scenario-based stochastic pro-
gramming approach is employed to handle uncertainties. The
scenario-based stochastic programing is an efficient tool to find
optimal decisions in problems involving uncertainty. When
it comes to make decisions under uncertainty using stochas-
tic programming, the building of scenario sets that properly
represent the uncertain input parameters constitutes a pre-
liminary task of utmost importance. In reality, the optimal
decisions derived from stochastic programming models may
be indeed remarkably sensitive to the scenario characteristics
of uncertain data. For this reason, a large number of researches
have been accomplished to design efficient scenario generation
methods. A brief description of the most relevant methods is
presented in [49].

However, the generation of a huge number of scenarios
may render the underlying optimization problem intractable.
Therefore, it is necessary to consider a limited subset of
scenarios without losing the generality of the original set.
Scenario reduction techniques can reduce the number of sce-
narios effectively [50], [51]. The probabilistic behavior of
customers has caused the operator to face plenty of uncer-
tainties in order to participate effectively in the market. Each
customer behaves differently because of social and economic
concerns. Therefore, each individual behavior will be different
from others. In this paper, two sets of uncertainty are consid-
ered, regarding the customers’ behavior. The first set is the
uncertainty of customers’ response to participate in a CBDR
program, and the second set is the uncertainty of selecting the
different carriers by the customers.

In order to generate scenarios with the mentioned uncertain
variables, the normal distribution has been utilized, with PDF

f (x, μ, σ ) = 1√
2π

e
− (x−μ)2

2σ2 (35)

where μ and σ represent the mean value and the standard
deviation, respectively.

In other words, it is assumed that the uncertain variables
have normal deviations around their mean values. On this
basis, different realizations of CBDR and CS are indepen-
dently modeled by employing a scenario generation process
based on roulette wheel mechanism [52].

For the sake of fair comparison, it is assumed that μ is equal
to its amount in the deterministic case and different values of
σ have been considered.

VI. NUMERICAL RESULTS

For assessing the effectiveness of the proposed model,
numerical results have been developed. As the inter-
nal dependency has been investigated in prior researches
(see [19] and [36]), the numerical results presented here focus
on the EDs.

The nonlinear formulation presented in this paper has been
linearized as indicated in Section IV-C and modeled in such
a way to be solved by using mixed integer linear programming
with the CPLEX 12 GAMS solver.

The local energy network under study in this paper consists
of CHP unit, AB, and HS. Inputs of this system are gas and
electricity carriers, while the outputs are electricity, gas, and
heat. Detailed information on these elements is provided in
the Appendix, Table II.

The illustration of the results is organized in two sections.
Section VI-A addresses the impact of the dependency existing
in the proposed operational model of the multienergy system.
Section VI-B shows and compares the results of stochastic
models (representing the uncertainty in customers’ choices)
and deterministic models.

All the studies in this paper are first implemented on a base
case where the amount of dependent demand is assumed to be
zero (leg,t = 0). Then, in each step the level of dependency is
increased.

However, it is assumed that the total amount of energy that
the customers require remains equal in all steps. As a result,
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Fig. 5. Energy carriers demand data in the operation time horizon.

Fig. 6. Energy carriers price data in the operation time horizon.

the total amount of independent usage of electricity and gas
has to be reduced. This reduction is conducted based on the
efficiency of electricity and gas production elements in the
system.

The information about local energy consumption in the
base case and input energy carrier prices is indicated in
Figs. 5 and 6. In this paper, the hot water consumption is
considered as the ED that can be supplied by both gas-fired
and electrical heaters. The numerical amount of dependency
is considered like energy and is expressed in per unit (p.u.).

The heat demand data is depicted in Fig. 7. The relation
between electricity and gas carrier weighted energy contribu-
tion variable in the dependent output of these two carriers is
shown

ηdd
e vdd,n

e,t,s + ηdd
g vdd,n

g,t,s = 1 (36)

where ηdd
e and ηdd

g are the efficiencies of the electrical and
the gas-fired water heaters, respectively. The typical amounts
considered for ηdd

e and ηdd
g are 0.9 and 0.6, respectively, based

on [53]. Furthermore, the typical amounts of vCS
e,t,s and vCS

g,t,s
are 0.26 and 0.74, respectively, based on [54].

In these studies, it is assumed that the system operator
enables CBDR by controlling the gas and electricity depen-
dent consumption. This can be achieved by sending one-way
communication signals to the multienergy demand, taking
advantage of the flexibility brought through this model.

Fig. 7. Heat demand data in the operation time horizon.

A. Case I: The Operational Model Study

The first case study regards the impact of dependency and
related CBDR programs in the network.

The aim is to investigate how the cost of the system and
the energy dispatch between the carriers are affected by the
dependency existing in the multienergy demand.

Various levels of hot water usage as dependent power in
the output are considered (leg,t varies from 0% up to 100%
by intervals of 5%). In addition, five different values for the
efficiency ηdd

g are assumed, while the efficiency of electricity
ηdd

e is considered to be fixed.
For generating these cases, first, the total amount of the gas

and electricity output from the local energy network to the
multienergy demand are set up to specific values.

Then, as it is assumed that the total amount of output does
not change, when the level of dependency increases, part of
the previous demand of a carrier does not exist anymore and
will be replaced by another carrier.

The corresponding demand amount is reduced from the
original carrier and is added to the so-called dependency. The
energy carriers are adjusted on the basis of the typical output
share and efficiency of energy converters. For example, the
gas and electricity shares are adjusted based on predetermined
ηdd

e and ηdd
g . Furthermore, the total share of ED is considered

for the CBDR program (lCB
t,s = Leg,t).

Fig. 8 shows the total system cost versus gas-fired heater
efficiency for various levels of the demand dependency per-
centage indicated in (34). When the output dependency
increases with the same ηdd

e , the operational flexibility
increases, resulting in lower system operation cost.

Conversely, for the same percentage of dependency when
ηdd

e changes, the costs reach a maximum amount and then
gradually decrease. The reason is that, as the output energy
amount of local energy network remains constant, by reducing
the gas energy converters’ efficiency the system will pro-
vide more dependent demand through the electricity carrier.
This means that up to a certain point, the operator of the
micro-multienergy system still can manage to keep the bal-
ance between the total system cost and gas energy carrier’s
consumption, but after that it is better for the operator to
exchange the carrier to another one, electricity in this case.

With relatively low efficiency of gas energy converters, the
demand requirements can be achieved by taking the benefits
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Fig. 8. System operation cost based on demand dependency percentage for
different water heater efficiencies.

Fig. 9. Evolution of the electricity input for demand dependency percentage
from 0% to 100%, with ηdd

g = 0.6. Inset: zoomed-in view for hour 7 A.M.

of using less electricity with higher efficiency than the gas
carrier and in a total view reducing the system operation
cost. In other words, when the efficiency of an energy car-
rier converter on the demand side is too low compared to
other carriers in the micro-multienergy system, it is bet-
ter to change the source of dependent demand to another
carrier that produces the required output with higher effi-
ciency.

In general, this case study determines that more proficiency
occurs when the micro-multienergy system and multienergy
demands efficiencies are not close to each other. In this
condition, the coordinated decision making between micro-
multienergy system and multienergy demand will decrease the
system’s operational cost. The proposed ED model enables
the quantification of the operational costs in different condi-
tions.

Figs. 9 and 10 depict the amount of input electricity and
gas carriers when ηdd

g = 0.6 for various levels of depen-
dency. In these figures, the dependency level is shown for
0% and 100%. The density of the colored region appearing
between the 0% and 100% limits indicates that the input quan-
tities change when the dependency level varies. The zoomed-in
views included in the figures indicate the corresponding type
of variation of the input quantities at a specific hour (7 A.M.).

Fig. 10. Evolution of the gas input for demand dependency percentage
from 0% to 100%, with ηdd

g = 0.6. Inset: zoomed-in view for hour 7 A.M.

As it is shown in Figs. 9 and 10 at the specific hour 7
A.M., the variation of power and gas input versus increasing
variation of demand dependency follows an opposite manner.

With increase in dependency percentage the consumption
of electricity decreases while the consumption of gas has an
increasing trend. The reason is that during hours 6–22 the
average electricity price is high; therefore, the system opera-
tor prefers to provide the dependent energy amount through
gas carrier rather than electricity, which also results in the
reduction of the total operation cost. On the other hand, dur-
ing hours 1–5, 23, and 24, when electricity price is lower, by
increasing the level of dependency the tendency for electric-
ity carrier consumption increases, while gas consumption shall
decrease.

B. Case II: Comparison of Stochastic and
Deterministic Results

This case study intends to examine the stochastic modeling
of the customers’ choice and derive the differences with the
deterministic model.

Data on dependency scenarios is considered based on the
input energy carriers’ prices, as presented in the Appendix,
Table III. In addition, as shown in (28)–(33) and Fig. 4, part
of the hot water consumption is dependent on the CBDR pro-
gram and the other part can be supplied by gas or electricity
according to customer’s choice.

The share of gas and electricity consumption is uncertain
because it depends on the consumer’s behavior in using elec-
trical and gas-fired water heater and responding to CBDR
program. The mentioned uncertainty is considered in the
stochastic model. For the sake of a fair comparison, the mean
value of the mentioned ratio in the stochastic model is equal
to the corresponding amount in the deterministic case.

Figs. 11 and 12 compare the share of CBDR and CS from
total dependent demand for both gas and electricity carriers of
multienergy demand in stochastic and deterministic situations.

From Fig. 11, most of the consumers tend to have their
own choice of the electricity carrier for most of the time,
with reduced participation in CBDR in early morning and late
night. On the other hand, Fig. 12 shows that the consumers
have the tendency to take part in the CBDR program for their
gas consumption. This tendency occurs mostly between hours
7–22 where no consumer participates in electric CBDR.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

NEYESTANI et al.: STOCHASTIC MODELING OF MULTIENERGY CARRIERS DEPENDENCIES IN SMART LOCAL NETWORKS WITH DERs 11

Fig. 11. Contribution of CBDR and CS to the electricity share of dependent
demand for deterministic and stochastic models.

Fig. 12. Contribution of CBDR and CS in gas share of dependent demand
for deterministic and stochastic models.

From Figs. 11 and 12, it can be seen that the results
obtained from the deterministic and stochastic models are sim-
ilar. However, in hour 6 A.M., a significant difference between
the results of electricity demand in stochastic and determin-
istic modeling occurs. The reason is that the assumed system
hour 6 A.M. is critical, being the point where the interaction
of internal and ED has the highest effect on the operator’s
decision making. Taking a look at Fig. 6 shows that this
hour is the time when the electricity price shows a rise and
will have a significant difference from the gas price. Besides,
considering Fig. 7, it shows that at the same hour (6 A.M.)
the demand for heat has its highest amount. Therefore, the
system operator is going to operate the CHP unit in a way
to be able to provide the required heat demand. The CHP
unit will be producing more electricity; hence, the system
operator will decide to reduce the amount of electricity pur-
chased from the upstream network and supply its customers
with the electricity produced by the CHP unit. Fig. 9 proves
this and indicates that the amount of electricity purchased at
6 A.M. is zero. The situation shows that, in such hours where
high link between internal dependencies and EDs may occur,
neglecting the stochastic modeling would affect the results
on the balance between power and gas inputs seen by the
operator.

Figs. 13 and 14 depict the variations of the input electricity
and gas for various scenarios of uncertainty for both CBDR
and CS. In these figures, for 900 scenarios, the amount of

Fig. 13. Electricity input variation for various stochastic scenarios.

Fig. 14. Gas input variation for various stochastic scenarios.

input energy is illustrated. In these figures, the color code is
shown in the figure determining the variation between the low-
est (dark blue) and highest (dark red) amount of input energy
carrier. The figures are plotted using surfaces with black edges.
The black areas in these figures show the density of the scenar-
ios’ number that occurred with the same trend. In other words,
in those areas, there are more scenarios that have equal amount
of input carrier in each hour (or with a very small difference)
causing the black edges to overlap and form a black area.
It also should be noted that the arrangement of the scenarios
are in a way that the scenarios are started from the lowest
probability of occurrence, then reach the highest probability
and after that the probability decreases again. This means that
scenarios with numbers 1–100 and 800–900 have the lowest
probability.

In Fig. 13, the black area is concentrated for the sce-
narios number 200–700. This shows that the scenarios that
have higher probability of occurrence tend to follow simi-
lar trend, while the other scenarios show high distortion in
their results. On the other hand, in Fig. 14, the scenarios do
not show a dramatic change in the amount, but overlapping
edges show that more probable scenarios exist regarding gas
input.
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Fig. 15. Variance of input power and gas.

The reason can be found beneath the fact that there are other
elements in the multienergy system that help the system oper-
ator to damp the effects of harsh uncertain scenarios regarding
the gas input energy.

The AB and CHP unit are two elements that help the supply
of gas and heat in the system. As a result, in such systems the
uncertainty of end users’ stochastic behavior can be managed
through the internal dependency in the multienergy system.

The results from the scenarios presented in
Figs. 13 and 14 are obtained to show the variance of
input energy carriers.

Fig. 15 shows that not only the changes in input gas variance
are extended to 24 h (while the variance of input power is
limited to hours 6–22), but also the amplitude of the variance
is higher compared to electricity. The reason is due to various
uncertainties that are imposed to the decision making process
for the multienergy system’s total gas input.

Regarding the gas energy carrier, not only the dependent
demand uncertainty should be considered, but also the effects
of HS and CHP unit should not be neglected. As the stor-
age has a time-dependent nature, the variance of gas input is
extended to various hours.

In addition, the CHP unit’s consumption of gas and its con-
flicts with the independent gas consumption and the dependent
demand impose other factors to the decision making problem.

For presenting the mechanics of the stochastic model,
Fig. 16 shows the variation of total cost versus the variations
in CBDR and CS variance. As it is observed, by increase in
the CS variance the total cost increases. On the other hand,
the increase in CBDR variance does not impose any significant
change in the amount of total cost. The reason is that when
the variance of CS is increasing, the uncertainty of customer’s
choice on different carriers is getting higher. The customer
choice referring to CS is not under control by the operator.
Conversely, CBDR is also driven by the operator’s action in
promoting the DR program, and when the CBDR variance is
increasing the operator can maintain its cost through schedul-
ing the consumption of the dependent demand. Moreover, it
shows that in higher variances of CS, as the CBDR variance
increases the total cost will be reduced. This also indicates
that the CBDR program will help the operator to reduce its
operation costs.

Fig. 16. Variation of total cost versus variation in CBDR and CS variance.

Fig. 17. Stored heat variation in HS for deterministic and stochastic models.

In order to indicate the performance of the stochastic model,
the stored heat is presented as one of the decision variables
of the operator in Fig. 17.

As it can be seen, the uncertainty of energy carriers’ demand
in the stochastic model causes the HS to be operated less com-
pared with the deterministic case. The main reason is that
a part of stored heat in each hour is wasted as heat loss.
Therefore, with higher amount of stored heat more heat loss
will be produced in the system, which during the optimization
process leads to less utilization of HS from the operator point
of view.

VII. CONCLUSION

For a local multienergy system, this paper has introduced the
concepts of dependent demand, referring to a specific service
that can be supplied through different energy carriers, inter-
nal dependencies (referring to changing the energy source in
multienergy flows under the control of the system operator)
and EDs (representing changes in the energy source driven
by the customer choice of the end user, also due to possible
participation in DR programs). A new stochastic model based
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TABLE II
DATA OF LOCAL ENERGY NETWORK ELEMENTS

TABLE III
DATA ON DEPENDENCY SCENARIOS

on the energy hub approach has been developed to represent
the EDs and their uncertainty referring to multienergy system
operation. For assessing the efficiency of the developed model,
a local energy system was considered and the uncertain behav-
ior of the consumers was modeled in a stochastic framework.
The uncertainties include the response of the customers par-
ticipating in a CBDR program, and the selection of different
carriers by the customers not participating in the CBDR pro-
gram, both affecting the energy carriers share. The numerical
results obtained on a case study show how an increased share
of participation in the CBDR program can reduce the opera-
tional costs. Furthermore, in networks with inefficient DERs it
will be more significant to manage part of the demand as DR
programs. In addition, the proposed approach enables quanti-
fying to what extent the stochastic dependencies impact on the
operating conditions of the system and can vary the schedule
of the operator because of the more accurate representation of
the relevant variables.

APPENDIX

See Tables II and III.
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