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Abstract—Development of distributed energy resources intro-
duces high level of interdependency and the need for integrated
models in a multienergy system (MES). Moreover, highlighting
environmental aspects facilitates electrification in the transporta-
tion sector and integration of plug-in electric vehicles (PEVs). In
this paper, aggregation of PEVs’ batteries in parking lots (PL)
is considered as a bulk electric storage in MES. The energy hub
approach is employed for modeling MES considering PL. Due to
the profitable behavior of PL in the reserve market, the energy
hub model is modified to consider the reserve sources as ancil-
lary services in the output energy vector. Moreover, the uncertain
traffic pattern of PEVs’ owners in PL is modeled by a stochastic
approach. The numerical results demonstrate the proficiency of
the proposed model, determining the changes in the behavior of
other MESs elements in the presence of PL.

Index Terms—Energy hub modeling, multienergy sys-
tem (MES), parking lot (PL), plug-in electric vehicles (PEVs).

NOMENCLATURE

Subscripts

e Electricity.
g Natural gas.
h Heat.
r Reserve.
t Time interval.
ω Scenario.

Superscripts

ar Arrived plug-in electric vehicles (PEVs) in park-
ing lot.
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CHP Combined heat and power.
con Contingency.
dep Departed PEVs from parking lot.
down PEVs’ departure SoC is less than scenario.
EC Energy converter.
ES Energy storage.
EV Electric vehicle.
G2V Grid to vehicle mode.
HS Heat storage.
in Input energy to micro-MES or parking lot.
inj Injected energy to macro-MES.
MaMES Macro-MES.
MED Multienergy demand.
new New matrix or vector.
old Old matrix or vector.
out Output energy from parking lot.
PL Parking lot.
Sc Scenario.
up PEVs’ departure state of charge is more than

scenario.
V2G Vehicle to grid mode.
WG Wind generation.

Parameters and Variables

Ca Total capacity of PEVs in PL.
Cd Cost of battery degradation.
FOR Forced outage rate.
g, G Natural gas.
N Number of PEVs in PL.
q, Q Heat.
r, R Reserve.
soc, SoC State of charge.
v Decision variable that determines the share of

each MESs elements from input energy carriers.
w, W Electricity.
x Binary variable.
ϕ PEVs participation ratio in V2G mode.
γ, � Charge/Discharge rate.
λ Heat to electricity ratio of CHP unit.
ρ Scenario probability.
η Efficiency.
π Energy price.
C Coupling matrix of ECs.
k Vector of surplus energy services.
l Vector of output energy services.
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M Matrix of converters’ vacant capacity.
p Vector of input energy carriers.
S Coupling matrix of ESs.
U Matrix of converters participation in reserve.
Remark 1: An underlined (overlined) variable is used to

represent the minimum (maximum) value of that variable.
Remark 2: Capital letters denote parameters and small ones

denote variables.

I. INTRODUCTION

A. Motivation and Aim

ENVIRONMENTAL aspects have been highlighted in
architecting future energy systems where sustainable

development plays a key role. Sustainable development in
the energy sector has been defined as a potential solution for
enhancing the energy system to meet the future energy require-
ments without interfering with the environment and energy
provision [1].

In this regard, studying the cross-impact of various energy
vectors and electrification of energy demand are two main
topics. In the first topic, the multienergy system (MES) con-
cept has been developed to consider the cross-impacts among
multienergy players (MEPs) from both decision making and
energy provision points of view [2]. The MEPs are defined
as the energy players who can trade more than one energy
carrier to maximize their profits while satisfying the out-
put energy services requirements. Moreover, electrification of
energy demand in systems with high penetration of renew-
able energy resources can mitigate environmental aspects
of carbon-based fuels. Transportation system as one of the
main energy consuming sectors plays an important role in
this vision. Commercializing PEVs technologies (e.g., battery
and charge/discharge facilities) accelerates their integration in
urban areas [3].

PEVs’ PLs are located in populated districts and equipped
with charge/discharge facilities. PEVs’ PLs not only serve
energy services to the PEVs, but also enable bi-directional
interface among a group of PEVs as a new generation of bulk
ES and energy system [4]. Therefore, in future energy systems
they can play as independent MEPs, having an important role
in a local MES as a bulk storage facility or flexible load.

This paper aims to model the operational behavior of PEVs’
PL as an element of local MES. For this purpose, MES is
described as a fractal structure and modeled by an energy hub
approach. As a result of the PL operational characteristics, its
behavior in both energy and reserve markets is considered.
The energy hub model is modified to handle the participation
of MES elements in the reserve market. Moreover, a stochastic
approach is applied to model the uncertainty of WG and the
behavior of PEVs’ owners in PL.

B. Literature Review and Contributions

In the scientific literature, MES concept has been defined as
an energy system that contains more than one energy carrier.
“Energy hub system” [5] and “matrix modeling” [6] are two
pioneer approaches that have been developed to model MES
as the combination of operation centers (mostly co-generation

or tri-generation units) and their interconnectors. Operation
centers consist of ECs and ESs that transform input energy
carriers into output energy services [7]. “Energy hub” and
“distributed multigeneration” are models for operation cen-
ters in energy hub system and matrix modeling approaches,
respectively. The model has been developed in [8] and [9] to
consider the behavior of MESs operator in various time hori-
zons (i.e., operation and planning). Furthermore, integration
of different energy resources, ECs and ESs has been modeled
on the energy hub framework in [10]–[12].

One of the main assumptions in the energy hub model is
the unidirectional energy flow; therefore after integrating RER
in [12] the model has been modified to inject the surplus
energy to the upstream energy network. On the other hand,
the capability of MES to serve ancillary services is discussed
in [13] and the new concept of multienergy/power arbitrage
has been developed for considering reserve in MES.

In this paper, the capability of MES to serve reserve ancil-
lary service is modeled as an injected energy service to
the upstream network, but contrary to [13], a virtual port is
assumed in the output of the energy hub model and the whole
system’s coupling matrix is modified to consider the reserve
provision of each energy element independently.

The proposed model for reserve provision is applied to
PEVs integration in a PL that can maximize its profit by par-
ticipating simultaneously in both reserve and energy markets.

For the integration of PEVs in the energy hub framework,
the internal interaction of PEVs has been modeled in [14] as
an independent energy hub. The model has been developed to
consider integration of PEVs in G2V mode as a manageable
load for optimal operation [15] and as an ancillary service
provision (frequency control) [16] in the energy hub system.

Although these references are almost the sole references
that survey the operational behavior of PEVs in MES, there
are plenty of references that report the role of PEVs integration
in power system studies.

Controlling the PEVs to maximize the income from fre-
quency regulation has been described in [17]. In [18], a heuris-
tic strategy for PEVs charging has been reported to provide
the regulation service. In [19], a business model has been
reported in which the PEV aggregator has been modeled as
a load aggregator that purchases energy from the electricity
market with no control over the PEV charging. A concep-
tual framework to operate the aggregated PEVs in the V2G
mode has been proposed in [20]. In [21], a linear program-
ming model has been presented to optimize the charging plan
for PEVs by minimizing electricity costs and battery wears.
In [22], a heuristic algorithm has been presented to control
PEV charging in response to time-of-use prices in a tradi-
tional power system. In [23], an optimization algorithm has
been proposed to manage the individual charging of PEVs to
decrease the deviation costs and to ensure a reliable supply
of manual reserve. A behavioral model for PEVs’ aggrega-
tor in reserve and energy markets has been presented in [24].
In [25], an optimization method has been presented to sup-
port the participation of the PEV aggregator in the day-ahead
spot and secondary reserve market. In [26], the behavior of
PEV aggregator has been modeled as a linking agent between
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PEV owners and the electricity market by using a stochastic
multilayer agent-based model.

Although these models have precisely considered the behav-
ior of aggregator and market characteristics, there are some
differences between PEVs’ aggregator and PL owner behavior.
The PEVs’ aggregator has wide knowledge about its con-
tracted PEVs, e.g., the number and battery characteristics, but
the knowledge of PL owner is mostly about the traffic pattern
in its PL zone. On the other hand, the main aim of this paper
is to investigate the role of PL in MES and the impact of its
behavior on other elements’ operational characteristics.

Therefore, in this paper, the PL behavior is modeled
based on the aggregated PEVs’ traffic pattern in PL and
the main objective is to fit this model with an energy hub
approach.

Regarding the role of PEVs in future MES, the main
contributions of this paper are threefold:

1) modeling PEVs’ PL in MES considering the uncertain
behavior of PEV owners, which can be operated in both
V2G and G2V modes;

2) modifying the mathematical model of energy hub to
consider the reserve ancillary service in MES;

3) developing a new operational model of PL to consider
its interface with MES and PEVs simultaneously.

C. Paper Organization

The rest of this paper is organized as follows. Problem
overview is presented in Section II. Section III models the
MES by energy hub approach and presents the modifications
to consider PEVs’ PL and the system reserve. In Section IV,
the operational framework of MESs elements is described.
The numerical results are represented in Section V and the
conclusion is provided in Section VI.

II. PROBLEM OVERVIEW

In this paper, the behavior of PEVs’ PL in MES is modeled.
In this regard, the energy hub model of MES is modified to
consider PL as an uncertain storage and enable MES to trade
reserve as PLs ancillary service. The proposed mathematical
model is applied in an operation problem. As a matter of fact,
the operational framework in this paper is an optimization
problem that MES operator maximizes its profit by consid-
ering its operational constraints. The module of energy hub
is added to the optimization problem as a set of constraints.
Therefore, in this section, first the MES structure is discussed
and the modeling domain is determined. After that, the pro-
posed approach for modeling PL in MES is described, and
finally the uncertainty characterization of uncertain resources
is represented.

A. Fractal Structure of MES

From the architecting point of view, MES can be modeled
as a self-similar multilayer structure. Each layer consists of
a number of sub-modules of MES with almost the same char-
acteristics and domains so that each of them is the interior
layer of this fractal structure.

In this vision, the system can be divided into three main lay-
ers, namely MaMES, micro-MES, and MED, being modeled
by an energy hub approach.

1) MaMES: MaMES is the main MEPs in MES. It can be
assumed as large regional energy companies that can
produce, transfer, and consume bulk energy amount. In
this paper, a typical MaMES supplies energy carriers to
the micro-MES.

2) Micro-MES: Micro-MES can be considered as an urban
district that consists of medium level ECs and ESs.
Micro-MES receives energy from MaMES and deliv-
ers energy to the MED. MaMES and micro-MES have
the same structure but their main differences are the
type of carriers and energy elements that are operated.
As a matter of fact, MaMES is the integration of some
micro-MESs and their related interconnectors.

3) MED: MED is an energy demand which can receive
various types of energy carriers and serves the required
energy services to its internal demands by implementing
internal energy resources (e.g., micro-CHP, residential
PEVs charging stations, and photovoltaic arrays). In
reality, smart buildings and industrial plants can be
considered as MED.

B. PEVs’ Modeling Approach

PEVs’ PL is located in micro-MES and it is operated by
its own operator. Therefore, in this paper, only micro-MES is
modeled by the energy hub approach and MaMES and MED
are considered as a multienergy environment that can trans-
act energy carriers with MES. PL serves energy reserve as
an ancillary service that should be traded in MaMES level.
The energy hub model is modified to consider PL as storage
with an uncertain behavior. Moreover, a virtual port is added
to the output of micro-MES to consider its reserve provision
capability.

On this basis, the reserve is considered as an output energy
service that can be served by the ESs and ECs. For ECs, the
reserve is modeled as the ability of the converter to increase
its output power, whereas for storages the reserve amount is
additionally related to its SoC.

In order to investigate the interaction of PL with micro-MES
and PEVs, a new method is proposed based on the changes
in total amount of SoC and the capacity of PL. This method
tracks SoC amount in each hour and determines the impact of
PEVs arrival and departure traffic on total SoC of PL.

C. Uncertainty Characterization

The traffic pattern of PEVs in PL is related to the uncertain
behavior of PEV owners. Therefore, a stochastic approach is
applied to model the characteristics of PEVs in PL, i.e., the
number, total capacity, and SoC in each hour. Furthermore,
the stochastic approach covers the uncertainty of WG. On this
basis, two groups of scenarios are generated for PL and WG,
and the PL operation is accomplished by considering these
scenarios.

Details of the stochastic approach are presented in the
Appendix.
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III. MATRIX MODELING OF MES
CONSIDERING PEVS’ PL

A. Comprehensive Model of MES

The energy hub approach models MES as a coupling
matrix that converts input energy carriers to output energy
services [4]. Equation (1) shows the matrix model of an energy
hub, where p, l, and ė are the vectors of input energy car-
riers, output energy services, and changes in ESs amount,
respectively.

In this model, C and S are coupling matrices and rely
on the ECs of energy hub and structure of ESs. One of the
main assumptions in the energy hub modeling is unidirectional
energy flow in the energy hub’s elements. Therefore, vector k
enables the model to inject energy hub’s surplus energy into
the upstream system [14]

[
C S

] [
p
ė

]
= [l] + [k]. (1)

In the energy hub, PL behaves as a storage system with
uncertainties in its total capacity and SoC in each hour. The
uncertain behavior of PL has been modeled by the stochastic
approach described in the Appendix. On the other hand, PL
has an interaction with MES as well as PEVs. The PLs electric
energy interaction with MES can be modeled by adding a new
row in matrix ë that represents the share of PLs SoC changes
in the output of energy services

ėnew =
[

ėold

sȯcPL

]
. (2)

In addition, electric reserve is considered as an output
energy service of MES that can be served to the upstream
system. Therefore, new rows (rinj) are added to the matrices
l and k, but due to sole usage of reserve in upstream network,
the amount of reserve array in matrix l is equal to zero

lnew =
[

lold

0

]
, knew =

[
kold

rinj

]
. (3)

By adding new rows in the output, the matrices C and S will
be modified to determine the share of each element on the new
output energy service (electric reserve). In the modified model,
the converter share can be modeled as the capability to max-
imize output electricity. However, for electric ES it depends
on its rated output power and its stored energy in each hour.
Determining the reserve service for electric ES needs new rows
in p to show the share of electric ES for serving reserve to
the MES as an input virtual energy carrier

pnew =
[

pold

rES

]
(4)

Cnew =
[

Cold 0
CEC CES

]
, Snew =

[
Sold SPL

0 0

]
. (5)

Cold coupling matrix that states the conversion of inputs
energy carriers into outputs energy services;

CEC coupling matrix to show the share of ECs in output
reserve, which is based on the efficiency of ECs;

CES coupling matrix to show the share of storage in out-
put reserve, which is based on discharge efficiency
of storage;

Fig. 1. Micro-MES schematic considering PEVs’ PL.

Sold storage coupling matrix that shows the changes
of output energy service versus changes in stored
energy;

SPL coupling matrix to show the share of PL in output
reserve, which is based on discharge efficiency of
PL;

M matrix of vacant capacity of ECs;
U Decision making matrix with binary arrays, deter-

mining the participation of each converter in output
reserve.

In order to produce CEC, each array of M is divided by
the corresponding array of Pold and then multiplied by the
array of U

CEC = M
pold . U. (6)

By substituting the modified terms in (1), the system’s new
equation is

[
Cnew Snew

] [
pnew

ėnew

]
= [

lnew] + [
knew]

(7)

[
Cold 0
CEC CES

Sold SPL

0 0

]
⎡

⎢
⎢
⎣

pold

rES

ėold

sȯcPL

⎤

⎥
⎥
⎦ =

[
lold

0

]
+

[
kold

rinj

]
.

(8)

B. Micro-MES Detailed Model

Fig. 1 demonstrates a micro-MES equipped by a CHP
unit, WG, auxiliary boiler (AB), HS, and PEVs’ PL. Input
energy carriers are electricity, natural gas, and electric reserve
of PL (pin

ω,t = [win
ω,t + wwind

ω,t gin
ω,t rPL

ω,t]), while output energy
services are electricity and heat (lMED

t = [WMED
t QMED

t 0]),
and surplus energy services are electric power and reserve
(kinj

ω,t = [winj
ω,t 0 rinj

ω,t]).
Equation (9), as shown at the top of next page, shows the

energy hub model of micro-MES considering its interaction
with MaMES and MED.
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⎡

⎢⎢
⎣

1 vCHP
g,ω,tη

CHP
e 0 0 1

/
ηPL

e

0 vCHP
g,ω,tη

CHP
h + vAB

g,ω,tη
AB
h 0 1

/
ηHS

h 0

0

((
G

in − vCHP
g,ω,tg

in
ω,t

)CHP

e

/
gin
ω,t

)
1
/
ηPL,discha

e 0 0

⎤

⎥⎥
⎦

⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

win
ω,t + wWG

ω,t

gin
ω,t

rPL
ω,t

q̇HS
ω,t

sȯcPL
ω,t

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

=
⎡

⎢
⎣

WMED
t

QMED
t

0

⎤

⎥
⎦ +

⎡

⎢⎢
⎣

winj
ω,t

0

rinj
ω,t

⎤

⎥⎥
⎦ (9)

Equations (10) and (11) show the efficiency of ES elements,
i.e., PL and HS, to interact with micro-MES

ηPL
e =

{
ηPL,cha

e , sȯcPL
ω,t ≥ 0

1/
ηPL,discha

e
, sȯcPL

ω,t < 0
(10)

ηHS
h =

{
η

HS,cha
h , q̇HS

ω,t ≥ 0
1
/

η
HS,discha
h

, q̇HS
ω,t < 0.

(11)

IV. OPERATIONAL FRAMEWORK OF PEVS’ PL IN MES

Micro-MES operator aims to maximize its profit by utilizing
energy elements (i.e., ESs and ECs) while preserving operation
constraints of MESs elements.

A. Objective Function

The objective function of micro-MES operator consists of
revenue and cost terms. The operator has an income from
injecting surplus energy to MaMES and selling energy to MED
and PEVs. On the other hand, buying energy from MaMES
and PEVs is costly and the operator should make a trade-
off between its costs and revenues. Equation (12) shows the
operator’s objective function, which consists of electricity, gas,
reserve, and heat profits from interaction with MaMES and
MED, micro-MES profit from PL interaction and finally its
profit from participating in reserve services

Maximizing
∑

ω

ρω

{
∑

t

[ (
winj

ω,t − win
ω,t

)
πMaMES

e,t

− gin
ω,tπ

MaMES
g,t + rinj

ω,tπ
MaMES
r,t

+ (
WMED

t

)
πMED

e,t + QMED
t πMED

h,t

+ socPL,up
ω,t πG2V

e,t − socPL,down
ω,t πV2G

e,t

−
(

pPL,out
ω,t + rPL

ω,t ρr,t

)
Cd

+ rinj
ω,t ρr,t π

MaMES
e,t

− rinj
ω,t ρr,t FORMESπcon

e,t

− rPL
ω,t ρr,t π

V2G,con
t

−
(

rCHP
ω,t ρr,t

/
ηCHP

e

)
πMaMES

g,t

] }

.

(12)

B. MES Operation Constraints

Micro-MES operation is constrained by energy elements’
characteristics and the capability to interact with MaMES.

1) Input Energy Carriers: Input energy carriers to the sys-
tem are restricted by system interconnectors’ characteristics
and should be lower than the maximum level

0 ≤ p ≤ p (13)

0 ≤ win
ω,t ≤ W

in
(14)

0 ≤ gin
ω,t ≤ G

in
. (15)

2) CHP Unit: Heat and electricity output of CHP unit
should be in a predetermined zone and its ratio is considered
as a constant parameter (λCHP)

0 ≤ wCHP
ω,t ≤ W

CHP
(16)

0 ≤ qCHP
ω,t ≤ Q

CHP
(17)

λCHP = qCHP
ω,t

/
wCHP

ω,t . (18)

3) AB: Output heat of AB should be in its upper and lower
operational bounds

QAB ≤ qAB
ω,t ≤ Q

AB
. (19)

4) HS: Rate of HS interaction with micro-MES should be
within operational limit

∣∣∣q̇HS
ω,t

∣∣∣ ≤ �HS. (20)

5) WG: Maximum output of WG is lower than its scenario
amount in each hour

0 ≤ wWG
ω,t ≤ WWG,Sc

ω,t . (21)

6) Decision Variable Constraint: v is the dispatch factor
and shows the share of each energy element from input energy,
and its amount should be between 0 and 1

0 ≤ vCHP
g,ω,t, vAB

g,ω,t ≤ 1 (22)

vCHP
g,ω,t + vAB

g,ω,t = 1. (23)

C. PEVs’ PL Operational Model

The SoC of PEVs in the PL is a tool for micro-MES oper-
ator to maximize its profit. PL has interactions with MES as
well as PEVs. It buys electric energy from MES for charg-
ing the PEVs’ batteries that, on the other hand, is solely
to the MES in peak hours, while PEV owners will also be
charged for that. Moreover, PL participates in the reserve mar-
ket, which motivates the increase of its SoC for achieving more
benefit.

Equation (24) demonstrates that PL interaction with
micro-MES is equal to ˙soc. Moreover, (25) represents the
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amount of this variable based on the level of SoC in two
consequent time intervals and the impact of arrived and
departed PEVs

sȯcPL
ω,t = wPL,in

ω,t − wPL,out
ω,t (24)

sȯcPL
ω,t = socPL

ω,t − socPL
ω,t−1 + socPL,ar

ω,t − socPL,dep
ω,t . (25)

The following assumptions have been considered to formu-
late the impact of arrived and departed PEVs.

1) If the SoC amount increases in each scenario in two
consecutive time intervals, the increase will be equal to
arriving PEVs’ SoC to the system [(26) and (27)].

2) If the SoC amount decreases in each scenario in two
consecutive time intervals, the normalized reduction
multiple PEVs’ SoC in prior time will be equal to the
departed PEVs’ SoC from the system [(28) and (29)].

3) In each hour and scenario, one of the departure or arrival
conditions will be considered

if socPL,Sc
ω,t − socPL,Sc

ω,t−1 ≥ 0 ⇒ socPL,ar
ω,t

= socPL,Sc
ω,t − socPL,Sc

ω,t−1

(26)

if socPL,Sc
ω,t − socPL,Sc

ω,t−1 < 0 ⇒ socPL,ar
ω,t = 0 (27)

if socPL,Sc
ω,t − socPL,Sc

ω,t−1 ≥ 0 ⇒ socPL,dep
ω,t = 0 (28)

if socPL,Sc
ω,t − socPL,Sc

ω,t−1 < 0 ⇒
socPL,dep

ω,t =
((

socPL,Sc
ω,t−1 − socPL,Sc

ω,t

)/
socPL,Sc

ω,t−1

)
.socPL

ω,t−1

(29)

xPLY,ar
ω,t + xPL,dep

ω,t = 1. (30)

In addition, to determine the PL financial transaction
with PEV owners, (31)–(35) calculated the SoC difference
of PEVs’ battery at departure time. Main assumptions are as
follows.

1) If the SoC of departed PEVs is more than the SoC reduc-
tion in two consecutive time intervals in each scenario,
PL is selling energy to the PEVs [(31) and (32)].

2) Otherwise, PL is buying energy from PEVs
[(33) and (34)].

3) In each hour and scenario, PL is conditioned by one of
the mentioned terms (35)

if socPL,dep
ω,t ≤

(
SoCPL,Sc

ω,t − SoCPL,Sc
ω,t−1

)
⇒ socPL,up

ω,t = 0

(31)

if
(

SoCPL,Sc
ω,t − SoCPL,Sc

ω,t−1

)
< socPL,dep

ω,t ⇒ socPL,up
ω,t

= socPL,dep
ω,t −

(
SoCPL,Sc

ω,t − SoCPL,Sc
ω,t−1

)
(32)

if socPL,dep
ω,t ≤

(
SoCPL,Sc

ω,t − SoCPL,Sc
ω,t−1

)
⇒ socPL,down

ω,t

=
(

SoCPL,Sc
ω,t − SoCPL,Sc

ω,t−1

)
− socPL,dep

ω,t (33)

if
(

SoCPL,Sc
ω,t − SoCPL,Sc

ω,t−1

)
< socPL,dep

ω,t ⇒ socPL,down
ω,t = 0

(34)

xPL,up
ω,t + xPL,down

ω,t = 1. (35)

Equations (36)–(38) demonstrate the PLs capability to inter-
act with micro-MES, which is related to the number of PEVs

TABLE I
DATA OF MICRO-MES ELEMENTS

in each hour and PL facilities for charging/discharging of
PEVs’ battery. The amount of injected energy to the MES
is restricted by the participation factor (ϕPL

e,t ) of PEVs in V2G
mode. Furthermore, the PLs capability of participating in the
reserve service is limited by the free capacity of PL intercon-
nector system with MES and the level of PEVs participation
(ϕPL

r,t ) in ancillary service. The participation factors in both
reserve and energy cases can be determined based on the will-
ingness of PEVs owners to share their PEVs’ capability with
the PL owner, instead of using parking facilities and receiving
incentives

wPL,in
ω,t ≤ γ PL

ω,t = �PEV .NPL,Sc
ω,t (36)

wPL,out
ω,t ≤ min

(
γ PL
ω,t, ϕ

PL
e,t .socPL

ω,t

)
(37)

rPL
ω,t = min

(
φPL

r,t socPL
ω,t − lPL,out

ω,t , γ PL
ω,t − lPL,out

ω,t , 0
)
. (38)

SoC of PEVs should be kept at the minimum and maximum
bounds of its operation condition. Therefore, (39) and (40)
determine the minimum and maximum amount of PLs SoC
based on the number of PEVs in the parking and safe criteria of
PEVs’ battery operation in each hour. Moreover, (41) restricts
the amount of PLs SoC in its minimum and maximum value,
being less than the total PL capacity

SoCPL
ω,t = SoCEV .NPL,Sc

ω,t (39)

SoC
PL
ω,t = SoC

EV
.NPL,Sc

ω,t (40)

SoCPL
ω,t ≤ socPL

ω,t ≤ SoC
PL
ω,t ≤ CaPL

ω,t. (41)

V. NUMERICAL RESULTS

A. Input Data Characterization

In this paper, the micro-MES is equipped with CHP unit,
AB, WG, HS, and PL. Data of the energy and reserve prices
for input of micro-MES have been obtained from hourly
data of the Spanish electricity market in July 2010 [27]. The
output prices and MEDs consumption are obtained from [28]
with some modifications.

The micro-MESs elements characterization, price signals,
and MEDs consumption are represented in Table I and
Figs. 2 and 3, respectively.
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Fig. 2. Input and output energy price of micro-MES.

Fig. 3. MED energy consumption.

B. Case Studies

Three case studies are assumed for assessing the proficiency
of the proposed model and the behavior of PL in micro-MES.

Case I is considered to demonstrate micro-MES operational
behavior without PL interaction. In case II, the PL is added
to the system to investigate the behavior of each micro-MESs
elements in the presence of PL as a source of operational
flexibility for the micro-MES operator. Moreover, case III
compares the behavior of micro-MES operator with and with-
out participating in the reserve market as another source of
operational flexibility for micro-MES operator.

1) Case I: The operation of micro-MES is considered
without interaction with PL.

Fig. 4 demonstrates the share of micro-MES, CHP, and WG
in MEDs electricity demand. Moreover, Fig. 5 shows the share
of AB, CHP, and HS in MEDs heat demand.

The CHP unit generates heat and electricity based on its
economic considerations and between the hours 5, 11–14, and
18–22, while the MED consumes both electricity and heat and
the electricity price is high. Although in hours 2, 10, 15–17,
23, and 24 there is no heat demand, due to high electricity
price the CHP generates the electricity need of MED and sur-
plus heat stored in HS. Moreover, AB and HS compensate
the shortage of heat demand when more heat production of
CHP is not beneficial. The surplus heat energy stored in HS
is delivered to the micro-MES in heat demand hours.

Fig. 4. Share of each micro-MESs energy elements in output electricity.

Fig. 5. Share of each micro-MESs energy elements in output heat.

Fig. 6. Share of each micro-MESs energy elements in output electricity.

2) Case II: The PL is considered as one of the micro-MES
elements and it interacts with both electric energy and reserve
services.

Figs. 6 and 7 depict the share of each micro-MESs elements
in electricity and heat energy balance of micro-MES, respec-
tively. Between hours 7–12, the PL receives energy to charge
its PEVs’ batteries. Moreover, in hours 16–24, the PL injects
about 154 kWh to the micro-MES while the electricity price
is high.

Furthermore, Fig. 8 shows the share of CHP and PL in
the output of reserve service. As it is shown, the CHP unit
prefers to participate in the electric energy market rather than
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Fig. 7. Share of each micro-MESs energy elements in output heat.

Fig. 8. CHP and PL share in reserve service.

the reserve market and introduces only its vacant capacity
in the reserve market. On the contrary, higher share of PLs
profit is for its participation in the reserve market. Between
hours 11–19 when reserve price is higher, PL delivers reserve
service to the system. At other hours, because of lower reserve
price and the risk of incurring penalty in reserve supplement,
the PL does not deliver reserve service.

3) Case III: The interaction of PL with micro-MES is con-
sidered but the capability of micro-MES to deliver reserve
service is denied.

Figs. 9 and 10 demonstrate electricity and heat balance in
micro-MES, respectively. It is shown that through hours 7–12
the PL has the same behavior as in case II, but in this case the
PL injects more electricity to the micro-MES (418 kWh) in
hours 15–19 because the micro-MES operator is not capable to
participate in the reserve market; hence, it prefers to enhance
its energy trade to maximize profit.

C. Discussion

The MES concept introduces an operational flexibility to
the system operators from both decision making and tech-
nical points of view. In this paper, participating in reserve
market and adding PL as an ES element are considered as
resources of operational flexibility. Participating in the reserve
market, which is originated from a long-term policy making
structure, gives a degree of freedom to the system oper-
ator for maximizing its profit. Furthermore, installing new

Fig. 9. Share of each micro-MESs energy elements in output electricity.

Fig. 10. Share of each micro-MESs energy elements in output heat.

Fig. 11. Operation pattern of HS in cases I and II.

energy elements (e.g., ESs and ECs) in the long-term facilitates
the enhancement of system operator’s flexibility to choose
between carriers and time intervals in the operation time hori-
zon. In this regard, the PL behaves like storage with uncertain
behavior in micro-MES environment. Thus, it changes the
operational pattern of micro-MES operator.

Fig. 11 compares the operation of HS in cases I and II as
the indicator of change in micro-MES operational flexibility
in the presence of PL. It shows that in case II, where the
micro-MES has interaction with PL, the HS is utilized more
and its charge and discharge are deeper. This means that by
implementing new energy elements the operation of the other
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TABLE II
FINANCIAL TRANSACTION OF MICRO-MES IN THREE CASES

Fig. 12. Operation pattern of PL in cases II and III.

elements will be affected. Based on this, integrated models are
needed to cover the mentioned internal interactions. Moreover,
micro-MES profit has increased from 306 to 333 C, as shown
in Table II, which also confirms the deduction that increasing
the flexibility of the system will help in delivering energy
services while assuring a higher system profit.

Moreover for determining the role of reserve market in the
operational flexibility of micro-MES, Fig. 12 depicts the PL
behavior in cases II and III.

As it can be seen, in case II when PL delivers reserve service
its output electric energy is less than when it only participates
in the electric energy interaction. The reason is that the PL
prefers to charge the PEVs’ battery and increase its SoC to
deliver reserve service in the middle of a period and sell the
charged energy to the PEVs’ owners at the end of the period.

Table II demonstrates the total amount and each term in the
objective function. It can be seen that in case II the operator
has the maximum profit while it has both sources of flexibility
in the system. Moreover, part of this maximum profit in case II
is due to selling more SoC to the PEVs (32 − 28 = 4£).
Case I shows that the profit of micro-MES participation in
reserve market is 6 C and case III determines that the profit
of micro-MES in the presence of PL and from participating in
the energy market is 16 C. Moreover, utilizing both of these
flexibilities added 33 C to micro-MES profit. The difference
between these amounts are about 0.3%, which shows that the
two flexibility resources have a cross-impact and utilizing both
of them simultaneously increases each individual impact.

VI. CONCLUSION

This paper has modeled the PL as an energy element in
MES. The proposed model considers PL as the aggregation of

Fig. 13. Probability distribution of battery capacity.

PEVs’ batteries that reflects the uncertain behavior of PEVs’
owners in arriving to and departing from PL. For assessing
the realistic PL interaction with MES, the reserve service
was considered as an output energy service. The energy hub
model has been modified to cover all of these considera-
tions. The numerical results have shown the role of PL in
changing the operational behavior of other MESs elements
and enhancing MES operational flexibility to deliver energy
demand. Moreover, considering the reserve service in the mod-
eling has highlighted the behavior of PL as a flexible load,
rather than its storage nature, which increases profit from
both charging the PEVs’ batteries and participating in reserve
supplement.

APPENDIX

A. Uncertainty Characterization

1) PL: The uncertainties of total capacity and SoC of PEVs
at PL are modeled by a stochastic model. The capacity of PL
is dependent on both the number and type of PEVs parked at
the PL. In this paper, the PL refers to a parking structure that
is located at a specific point. However, the generated scenarios
are based on an average traffic behavior of car owners. In other
words, it is assumed that the PL is an aggregation of all PLs
that are geographically scattered over the study region. The
PEV owner’s travel patterns are extracted from [29]. To this
end, it is assumed that PEV drivers will have a travel behavior
similar to internal combustion engine vehicle drivers, traveling
an average daily distance of 39.5 miles. This is employed to
calculate the SoC of PEVs arriving to the PL.

On the other hand, the ES capacity of each PEV depends
on the EV class. In [30], PEV batteries have been categorized
to twenty four different classes. On this basis, the redun-
dancy of the mentioned classes is considered as the probability
distribution of the battery capacities in a market as in Fig 13.

According to the probability distribution of PEV classes and
the probability of the number of PEVs at PL, the probable
capacity of PEVs at PL is obtained as in Fig 14.

SoC of PL relies on the daily driven distance of each PEV
and the mentioned capacity of PEVs at PL. The probabilistic
traveled distance is applied to calculate the SoC of PL.

Based on [31], the lognormal distribution function is uti-
lized to generate the probabilistic daily distance. The daily
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Fig. 14. Hourly nominal capacity of EVs at PL.

Fig. 15. Hourly SoC of PL.

traveled distance, Md, can be formulated as (A.42) [32]

Md = exp

(
ln

(
μ2

md

/√
μ2

md + σ 2
md

)

+ N. ln

(
μ2

md

/√
μ2

md + σ 2
md

))
(A.42)

where N is the standard normal random variable, and μmd and
σmd are the mean and standard deviation of Md, being both
calculated based on historical data [29].

According to [29], vehicles travel an average daily distance
of 39.5 miles. On the other hand, an EV takes approximately
0.35 kWh to recharge for each mile traveling [29]. On this
basis and according to the above mentioned description, the
hourly SoC of PL is obtained as in Fig 15.

2) Wind Power: Uncertainties of wind power are modeled
to generate appropriate input scenarios for this paper. Although
accurate probability distribution function (PDF) of wind speed
is nonstationary and no discernible actual PDF can be adjusted
to it, yet most of the previous researches (see [33]) have used
Weibull distribution in order to model wind speed. On this
basis, the probability of each wind speed scenario can be
calculated as follows:

probω =
WSω+1∫

WSω

(k/c)(v/c)k−1 exp
[
−(v/c)k

]
dv (A.43)

Fig. 16. Wind power generation scenarios.

where c > 0 and k > 0 are referred to as the scale and
shape factors, respectively. WSω is the wind speed of the ωth
scenario.

The wind power, PGW , corresponding to a specific wind
speed, WSω, can be obtained from (A.44). In (A.44),
A, B, and C are constants that can be calculated according
to [34]

PGW =

⎧
⎪⎨

⎪⎩

0

Pr
(
A + B × WSω + C × WS2

ω

)

Pr

0 ≤ WSω ≤ Vc or WSω ≥ Vc0

Vc ≤ WSω ≤ Vr

Vr ≤ WSω ≤ Vco

(A.44)

where Vc, Vc0, and Vcr represent cut-in speed, cut-out speed,
and rated speed, respectively. According to the above men-
tioned descriptions, different scenarios are generated based on
roulette wheel mechanism [35].

It should be noted that, although the higher number of
scenarios produces a more accurate model to consider the
uncertainties, it may yield an unmanageable optimization
problem.

Therefore, a scenario reduction technique is considered,
using k-means clustering technique, resulting in a scenario tree
with independent scenarios that is applied to the case studies.

Moreover, in this paper, the swift current wind data are
used to generate wind power scenarios [34]. On this basis,
the generated scenarios are illustrated in Fig. 16.
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