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Abstract—Penetration of distributed generation systems in con-
ventional power systems leads to power quality (PQ) disturbances.
This paper provides an improved PQ disturbances classification,
which is associated with load changes and environmental factors.
Various forms of PQ disturbances, including sag, swell, notch, and
harmonics, are taken into account. Several features are obtained
through hyperbolic S-transform, out of which the optimal features
are selected using a genetic algorithm. These optimal features are
used forPQdisturbances classification by employing support vector
machines (SVMs) and decision tree (DT) classifiers. The study is
supported by three different case studies, considering the experi-
mental setup prototypes for wind energy and photovoltaic systems,
as well as the modified Nordic 32-bus test system. The robustness
and precision of DT and SWM are performed with noise and
harmonics in the disturbance signals, thus providing comprehen-
sive results.

Index Terms—Classification, decision tree (DT), distributed
generation (DG), HS-transform (HST), power quality (PQ),
support vector machines (SVMs).

I. INTRODUCTION

R ECENTLY, distributed generation (DG) has become
widely used because of the advantages associated with

this green formof energy [1].Wind energy and photovoltaic (PV)
systems are environmentally friendly and considered as leading
energy resources for the future. However, high DG penetration
offers technical and operational challenges to the power engi-
neers, causing power quality (PQ) and stability problems.

Output stability is a prime concern when systems operate in an
isolated or grid-connected mode as per the requirements [2].

Serious concerns have been raised in view of the impact from
wind and PV resources on PQ. Therefore, these resources are
usually integrated with other DG sources, such as fuel cell and
diesel generator, alongside storage devices like batteries, fly-
wheels, and ultracapacitors to augment the quality/stability of the
system [3], [4].

The behavior of the PV system is influenced by various factors,
including solar strength, the temperature of the cell, and possible
shading [5]. Similarly, wind energy systems depend upon the
input wind speed, tower shadow effect, among other factors [6].

These environmental factors along with variations in load,
capacitor switching, charging of transformers, starting of induc-
tion machines, use of nonlinear loads, and welding transformers
lead to PQ problems such as sag, swell, notch, harmonics, etc.
In the past, many researchers had highlighted and studied the PQ
problems due to the variations in linear/nonlinear load; however,
the disturbances occurred due to environmental factors, such as
deviations in wind speed and solar irradiance may also lead to
various operational issues. This includes mal-operation of pro-
tective devices, failure and overloading of electrical equipment,
instabilities, and so on [7], [8]. For example, when wind/PV
systems are interfaced to the grid with the help of dc/dc and dc/ac
converters, and maximum power point tracking controllers are
incorporated into these systems, system complexity increases
further to tackle PQ problems.

As a matter of fact, all these scenarios of disturbances must be
addressed in order to make power system operations and control
more robust with high penetration of renewable resources. The
presence of DG in the system opens up a new challenge to power
engineers and researchers to address the issues related to PQ
disturbances.

In the past studies, PQ indices, such as peak values, crest factor,
total harmonic distortion (THD), power factor, instantaneous
frequency, and energy deviation, were calculated using frequency
spectrumor Parseval’s theorem formonitoring of the disturbances
[7]. The techniques, such as fast Fourier transform (FFT), chirp
Z-transform, Welch algorithm, and zoom FFT, have been widely
used for monitoring of electrical parameter [8], [9]. But, some-
times these techniques lead tomisclassification of the disturbances
[9]. For example, FFT is not accurate in the analysis of nonsta-
tionary disturbances including voltage notch and transients.

Thus, time-frequency analysis, namely wavelet transform
(WT), short-time Fourier transform (STFT), and Kalman filters,
are being extensively employed for detection and classification
problems [10], [11].
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Yet, the main demerit of WT is its incapacity to sense
disturbances when there is signal noise [11]. Hence, modified
WT named S-transform (ST) was developed for improving the
detection performance [12].

Curve-fitting,magnitude, and frequencyestimationapproaches,
such as Kalman filtering, the recursive least squares algorithm,
non-recursive Newton algorithm, and recursive Newton algo-
rithm, were also used to detect PQ disturbances [13], [14]. But,
when the system nonlinearities are considered, extended and
unscented Kalman filters are proved to provide better results [15].

Similarly, the classification of PQ disturbances is studied by
researchers using soft computing approaches such as artificial
neural network (ANN), fuzzy and neuro-fuzzy systems [16]–[18].
But these classification methods are based on the raw disturbance
signal data that might augment computational burden. Therefore,
features such as mean, variance, standard deviation (STD), THD,
energy, and entropy are extracted through STFT, ST, and Hilbert
transform. These feature datasets are then fed to pattern recogni-
tion techniques, such as ANN, probabilistic neural network,
neuro-fuzzy,DT, and support vectormachines (SVMs), to classify
the disturbances [19]–[27].

The authors in [27] have discussed the classification of PQ
disturbances caused due to changes in load, solar irradiance, and
wind speed in a renewable resources-based hybrid DG system.
Based on the results reported in [27], the authors proposed
features extraction using hyperbolic S-transform (HS-transform)
[22] followed by the classification of PQ disturbances using
decision tree (DT) [23], [24] or SVM [25], [26] in a system with
DG. HS-transform is considered for its superior time/frequency
resolution and proficiency in detecting and localizing the dis-
turbances, even coexisting with noise.

Similarly, DT and SVM are selected because of their classifi-
cation ability with higher accuracy. The optimal set of features,
selected byGA, is fed to these classifier algorithms.DTpartitions
the input feature dataset into different classes based on thresh-
olds, whereas classification by SVM is based on nonlinear
decision boundaries called hyperplanes. Parameters of SVM are
obtained by cross-validation.

The paper is structured as follows. Section II introduces the
approach for classification. Section III addresses the influence of
environmental factors on voltage signal. Optimal feature selec-
tion byGA is provided in Section IV. The results using DT/SVM
are given in Section V. Section VI concludes the paper.

II. CLASSIFICATION APPROACH

The descriptions of HS-transform (for detection and feature
extraction), DT, and SVM (for PQ disturbances classification)
are detailed as follows.

A. HS-Transform

ST, a modified WT with phasor correction, is an invertible
time-frequency localization multi-resolution analysis, which is
formulated usingWT and STFT. Its analysis considers a variable
Gaussian window whose width is inversely proportional to
frequency. Sometimes, ST with a Gaussian window fails to
localize transient disturbances in the presence of noise. Thus,

HS-transform with pseudohyperbolic Gaussian window pro-
vides enhanced time/frequency resolutions in low–high frequen-
cies. A higher window asymmetry at low frequencies increases
the width in frequency domain [22].

The hyperbolic window is expressed as

where

The discrete version of HS-transform is calculated and
denotes Fourier transform of hyperbolic window

where

is the frequency shifted Fourier transform
and is given by

B. Decision Tree

Data classification is the process of checking the similarities in
a dataset and to classify them into distinct classes.

DTs [23], [24] are widely used in the classification based on
the choice of an attribute that maximizes and fixes data division.
These attributes are split into several branches recursively, until
the termination and classification is reached.

The mathematical illustration of DT algorithm is constructed
upon the subsequent definitions

where is the available observations number, is the indepen-
dent variables number, is the -dimension vector of the
variable forecasted from , is the th component vector of
-dimension autonomous variables, are

autonomous variables of pattern vector , and is the transpose
notation vector.
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Theobjective ofDT is to forecast based on the observation of
. As several DTs with different accuracy levels can be built

from , obtaining the optimal tree is challenging due to the large
search space dimension. But suitable algorithms can be estab-
lished for DT that reflect a tradeoff between complexity and
accuracy. These algorithms create a DT by a sequence of local
optimal decisions about which features/system parameters can
be used to partition dataset . The optimal or rightly sizedDT
is built in accordance with the subsequent optimization problem

where is the error level in the misclassification of tree ,
is the optimal DT for minimizing the error of misclassifica-

tion, is a binary tree , is the index
number of the tree, is a tree node,with the root node, is the
re-substitution estimation of error inmisclassifying in node , and

is the probability that any case drops into node .
and represent the sub-trees given on left/right partition

sets. is formed by features plane partitioning. Lattice could
be binary partitioned into conjointly exclusive left/right sets, as
presented in Fig. 1(a) for 2-D binary classification boundaries
presented in Fig. 1(b). The left set comprises lattice components
having feature values less than the threshold limit, whereas the
right set comprises lattice components having feature values
surpassing the threshold limit.

C. Support Vector Machines

SVMs represent a statistical learning technique for the classi-
fication of patterns based on structural riskminimizationmethod,
being a suitable candidate due to its capacity to generalize high-
dimensional feature spaces.

SVMs have provided better performance than other classical
techniques, such as ANN and Bays classifier [25], being suitable
for PQ disturbances classification [26]. It gives improved gen-
eralization capabilities comparatively to ANN because its train-
ing is supported on a sequential minimization technique.

For -dimension inputs is the sample
number fitting to class 1 or class 2 with outputs for class 1
and for class 2, correspondingly.

The hyperplane is given as

where is an -dimension vector and is a parameter.
The separating hyperplane position is defined by the and

values (Fig. 2).
The constraints are if and

if , thus

The geometrical distance is given as . The optimal hyper-
plane can be driven by the following optimization problem [25]:

subject to

The optimal bias value is given as

Fig. 1. (a) Threshold-based classification and (b) boundary-based classification.

Fig. 2. Hyperplane of SVM for classification.
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where and are random SVMs for class 1 and class 2,
respectively.

The decision function corresponds to

Unidentified data sample is categorized as

The PQ disturbances classification is accomplished by apply-
ing a kernel function [27], such as Gaussian radial basis kernel
function [28].

III. EFFECT OF ENVIRONMENTAL FACTORS ON VOLTAGE

The study is performed for three different test systems:
1) experimental setup prototype for a wind energy system;
2) experimental setup prototype for a PV system;
3) modified Nordic 32-bus test system with wind/PV

penetration.
Environmental factors, such as solar/wind variations, signifi-

cantly affect voltage at the point of common coupling (PCC),
inducing sag, swell, and notch. The parameters of wind and PV
system are considered from [11] and [27].

A. Wind Energy System

Aprototype setup of awind energy systemwas experimentally
developed in the laboratory [Fig. 3(a)] whose equivalent diagram
is shown in Fig. 3(b). The experimental setup consists of two
synchronous alternators driven by a dcmotor as the primemover.
One of the generators acts as wind generator (WG), while the
second one is considered equivalent to the grid. The variation in
the speed of the prime mover is assumed to be equivalent to the
wind speed variation input to the wind turbine generator. The
swell in the voltage profile due to the increase in dc motor speed/
wind speed can be seen in Fig. 3(c), whereas notch with
harmonics can be seen in Fig. 3(d). The description of the
disturbances (C1–C4) is presented in Table I PV system.

A prototype setup of a PV system was experimentally devel-
oped in the laboratory [Fig. 4(a)]. Based on the climatic condi-
tions and sliding window arrangements in the laboratory, the
solar irradiance is modified to generate PQ disturbances. The
swell associated with the increase in solar irradiance can be seen
in Fig. 4(b), whereas notch with swell due to sudden load change
and solar irradiance can be seen in Fig. 4(c). The description of
disturbances (C5–C7) is presented in Table I.

B. Modified Nordic 32-Bus Test System

Fig. 5 shows the modified Nordic 32-bus test system [28]
considered in this study, which presents the effect of both PV and
wind power penetration on PQ. The nominal power capacity is
about 19000MW.The test system is changed by adding 600MW
from WGs and 400 MW from the PV system. PQ disturbances
are created in this test systemunder varying solar irradiance/wind
speed, and load up to of nominal values. The wind/PV
models are taken from [11]. The description of disturbances
(C8–C13) is presented in Table I.

Fig. 3. (a) Experimental prototype for a wind energy system, (b) equivalent
diagram, (c) swell due to increase in wind speed, and (d) notch with harmonics.

Fig. 4. (a) Experimental prototype for a PV system, (b) swell due to increase in
solar irradiance, and (c) notch with swell.
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IV. OPTIMAL FEATURE SELECTION BY GA

PQ disturbance signals, described in Table I, are processed
through HS-transform, providing the HST matrix. The sampling
frequency of retrieved signals at PCC is considered to be
3.2 kHz. Ten statistical features are obtained from the
HST matrix, concerning energy of magnitude/phase contour,
STD of magnitude/phase contour, mean of magnitude/phase
contour, skewness of magnitude/phase contour, and kurtosis of
magnitude/phase contour.

Optimal feature selection is accomplished by GA (Fig. 6). GA
is a stochastic search algorithm based on the natural evolution

process in which the fittest individual is considered to be winner
in the competition. It begins with a random initial population in
which the fittest individuals have a greater probability to be
chosen to produce children for the following generation. The
chosen individuals are enhanced by crossover/mutation. The
algorithm is repeated till a converging criterion is met [30].

As illustrated in Fig. 6, the voltage signal is retrieved at PCC
and is processed through HS-transform to extract the statistical
features. The total number of features extracted for the 13
different PQ disturbances corresponds to 130 feature vectors.
GA is used to select the most appropriate features, leading to
improved classification accuracy. The GA encoding scheme of
chromosome is composed of a binary string, representing the
choice of one of the features from the existing 10 features in the
16 nodes. The decoding of the chromosomes is based on a
discrete-type decoding technique. The mutation operator varies
from 1 to 0 and vice-versa. Crossover probability is considered
between 0.5 and 1, while mutation probability is considered
between 0.1 and 1.

Usually, the following three steps are considered for selecting
the optimal feature set [31], [32]:

Step 1) Chromosome design:The chromosomes are designed
based on the conversion of bit strings from genotype
to phenotype using the following equation [31]:

where is the phenotype of bit string, is the
maximum value of the parameter, is the minimum
value of the parameter, is the decimal value of bit
string, and is the length of bit string. For the
chromosome representing the feature mask, the bit

TABLE I
SIGNAL EXPLANATION FOR PQ DISTURBANCES

Fig. 5. Modified Nordic 32-bus test system [29].

Fig. 6. Flowchart for the optimal feature selection by GA.
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“1” indicates that the feature is selected, whereas “0”
indicates that the feature is not selected.

Step 2) Fitness function: High classification accuracy, mini-
mum number of selected features, and feature cost are
the three important criteria used to design a fitness
function based on

where is the DT classification accuracy weight,
DT_accuracy is the classification accuracy of DT,
is the weight for the number of features, and is the
cost of feature , where “1” indicates that feature is
selected, and “0” indicates that feature is not selected.

Step 3) Architectures forGA-based optimal feature:This step
consists of data processing, fitness evaluation, and
genetic operation and convergence [32].

Fig. 7 shows the various steps for the classification of PQ
disturbances.

V. CLASSIFICATION USING DT AND SVM

The classification capabilities of DT and SVM in the three
test systems, under different operating scenarios, are detailed as
follows.

A. Wind Energy System

The HS matrix from which the features are extracted is a
matrix in which the rows denote frequency, whereas the columns
denote time instant. In this study, 200 diverse tests are performed
in the experimental prototype for four PQ disturbances. The final
feature matrix size is 200 × 10, since 10 optimal features are

Fig. 7. Flowchart for the classification strategy using DT/SVM.

TABLE II
CLASSIFICATION OF DISTURBANCES C1–C4 FOR THE WIND ENERGY SYSTEM

Fig. 8. Total classification accuracy for the PV system: (a) between sag and swell
and (b) between swell and notch, in voltage signal.

Fig. 9. Boundary plot to assess the classification performance of SVM.
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selected using GA for each case. The classification accuracy for
disturbances C1–C4 is provided in Table II. Elements in the
diagonal denote properly classified percentage, whereas ele-
ments off the diagonal denotemisclassification percentage. Total
classification accuracy using DT and SVM is shown in the last
row of the table.

The results reflect a better accuracy of DT compared to SVM
in classifying the disturbances under different operating
conditions.

B. PV System

A similar procedure is adopted in this case, i.e., features are
extracted by HS-transform. Out of the total features, only the
optimal features are selected using GA, which are given as input
to DT and SVM to classify the disturbances under no-noise, 40-,
30-, and 20-dB noise scenarios.

The results showing the classification accuracy between sag
and swell disturbances are presented in Fig. 8(a), and the results
showing the classification accuracy between swell and notch are
presented in Fig. 8(b). The results show some degradation of
classification accuracy with the increase of noise level from 40 to
20 dB, but still always above 92%. The classification perfor-
mance of SVM is also tested using a boundary plot, presented in
Fig. 9, clearly discriminating the disturbances based on the
decision boundaries called hyperplanes.

Next, a classification study is presented under no-noise and
20-dB noise using DT and SVM to check their ability to classify
disturbances C1–C7. The classification results are shown in
Table III. Both DT and SVM perform well without significant
deterioration, butDT shows again better accuracy than SVM.This
reflects the robustness of HS-transform combined with DT.

C. Modified Nordic 32-Bus Test System

The classification ability is also studied on the modified
Nordic 32-bus test system, shown previously in Fig. 5.

The different disturbances C8–C13, as mentioned in Table I,
are classified using DT and SVM. The classification accuracy
results are shown in Fig. 10(a) and (b) between sag and swell,
swell and notch, respectively. The accuracy of DT as classifier is
observed to be comparatively better than SVM. The results
considering different combinations of features under different
noise levels are shown in Table IV.

Classification accuracy augments as the features number in-
creases. Moreover, as the noise level increases, the accuracy
diminishes, but still always above 93% for SVM and 95% for
DT, respectively. The classification accuracywith different hybrid
techniques under different noise levels is shown in Table V. The

TABLE III
CLASSIFICATION OF DISTURBANCES C1–C7

Fig. 10. Total classification accuracy for themodifiedNordic 32-bus test system:
(a) between sag and swell and (b) between swell and notch, in voltage signal.
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best classification accuracy corresponds to HS-transform com-
bined with DT, reaching a maximum of 99.5% with optimal
feature selection by GA under the no-noise scenario.

Further, the accuracy of the proposed approach is tested
for different percentages of DG penetration in the 32-bus test
system, as presented in Table VI. It is concluded from this tabular
result that with the increase in penetration level, the accuracy of
the proposed approach is decreased by only a very small
percentage, which is an important additional feature.

VI. CONCLUSION

This work presented a study on the detection and classification
of PQ disturbances obtained in three different test systems
(experimental prototypes for wind/PV systems and modified
Nordic 32-bus test system with wind/PV penetration) using
WT/ST/HS-transform and DT/SVM. The PQ disturbances are
created not only due to load change, but also due to changes
in environmental factors like wind speed and solar irradiance.
The disturbances were detected using WT, ST, and HS-
transform, of which HS-transform showed improved perfor-
mance. Also, the classification of PQ disturbances under
different operating conditions was tested by extracting features
usingWT/ST/HS-transform followed by the selection of optimal

features by GA. The optimal features were fed to DT/SVM to
classify the disturbances. Using optimal features fromGA, along
with the HS-transform, significantly improves the classification
strategy. A thorough comparative assessment in terms of classi-
fication accuracy also leads to conclude that the proficiency of
DT is better than SVM. The best classification accuracy was
obtained with HS-transform combined with DT and optimal
feature selection by GA, reaching 99.5% on the modified Nordic
32-bus test system under no-noise, and 96.1%with a 20-dB noise
scenario.
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