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programming (SMILP) approach to maximize total expected profit
of one price-maker hydro producer in a pool-based electricity Puw Probability of scenario w.
market. Head dependence, commitment decisions, discharge ..
ramping, startup costs and forbidden zones are all effectively @ Weighting parameter.
handled in our approach. Uncertainty about the competitors’ of- Ak Market price in period % in scenario w.
fers is adequately represented by residual demand curves (RDCs) '
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C. Binary Variables

Yoo i,k Decision to start-up plant j in period % in scenario
w.

2w ik Decision to shut-down plant j in period & in
scenario w.

Wy 5k Unit commitment of plant j in period k& in scenario
w.

d., ik Binary variable equalto 1 if H;, 1 < v, 1 <
Hjr.

My, 5.k Binary variableequalto 1if 7}, 1 <1, ;% <T};
or Tj_’i < tw,jvk < Tj,i+1.

U ks Binary variable equal to 1 if step s is the final step
to achieve quota ¢, ; in period k in scenario w.

9w,k  Binary variable linking the offers in period & for

scenarios w and w'.

D. Functions

Awk(gu,r) RDC in period % in scenario w.

s (tw j.k) Linear piecewise estimation of power output
function aimed at a parametric value of the
water volume, 7"

4

I. INTRODUCTION

EREGULATION of the electricity industry has induced a

formation of mechanisms to encourage competition [1].
In this framework, the aim of deregulation is to assure a clear
separation between generation, transmission and distribution
activities.

Hydro energy is currently one of the most significant renew-
able energy sources in the Portuguese system [2] and other parts
of the world. Hydro units are fast in terms of operation, com-
pared to coal-fired and natural gas units, ensuring a rapid re-
sponse to load changes. This feature is important to meet peak
demands and ensure network stability. Also, hydro units pro-
duce less pollution than competing technologies, being favor-
able alternatives for electricity generation at intermediate, peak
and base loads [3].

Concerning future operations, the optimized management of
the available water provides self-scheduling and embodies an
important gain for hydro generating companies. Taking this into
account, a hydro generating company submits optimal offers to
the market, thus hydro scheduling represents a necessary tool
that enables optimal bidding decisions [4].

Three time horizons are typically considered in hydro sched-
uling problems: short- (one day to one week), mid- (one week to
one month) and long-terms (few months or even years) [5], [6].
The boundary conditions established by the mid-term sched-
uling are the reservoir levels that should be met at the day end
[7]. Only the short-term hydro scheduling problem is consid-
ered here.

Water inflow can be taken as deterministic in the short-term,
which is an acceptable assumption, especially when the time
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horizon is only one day. Indeed, on a daily basis, water inflows
may be forecasted with rather good precision [8]. However, in
the mid- and long-terms, water inflow must be treated as sto-
chastic [9], [10].

The market environment is typically composed of a variety
of submarkets to facilitate trade between consumers and power
producers, such as the pool and the bilateral contracts markets.
The pool market is particularly relevant to our problem, namely
the day-ahead market, in which most of the energy is negoti-
ated. As a consequence of the market power of some producers,
two types of generating companies can be listed: price-takers
[11]-[13] and price-makers [14]-[16].

Price-takers accept market prices without being able to affect
them. Instead, price-makers have market power, thus being able
to influence market prices to increase profit [17].

Price volatility has become a major risk factor for hydro pro-
ducers. Risk management allows hedging against market un-
certainty [18], which in turn can be modeled via scenarios. Un-
certainty of the input variables stochastic programming is re-
quired, while risk measures can be used to avoid solutions that
imply small profits or major costs [19]. Inflow uncertainty in
the stochastic hydro-thermal scheduling problem was consid-
ered in [20] for the mid-term within a dynamic programming
framework.

In the technical literature the hydro scheduling problem has
been traditionally solved using dynamic programming, posing
computational difficulties due to the curse of dimensionality. It
is still applied nowadays in the case of a single hydro plant, as
in [21], but not for cascaded hydro systems [22].

Soft computing methods have also been used for the hydro
scheduling problem, such as differential evolution [23], cultural
algorithm [24], immune algorithm [25] and particle swarm op-
timization variants [26]. However, convergence and numerical
problems may occur with the use of heuristic procedures.

Mixed-integer linear programming (MILP) has proven to be
a reliable option for solving the hydro scheduling problem [27],
since the nonlinearities of the problem (such as the relation be-
tween power outputof a plant and the corresponding water dis-
charged), can be precisely incorporated with a linear piecewise
estimation. Also, the solution can be found within an acceptable
computation time with high accuracy [28]. A stochastic model
can be utilized to enable profit maximization while minimizing
financial risks [29].

Hence, this paper offers a stochastic MILP approach to max-
imize total expected profit of one price-maker hydro producer
operating in a pool-based electricity market, hedging against
risk and uncertainty. The head effect is integrated with an im-
proved linearization technique, where binary variables allow us
to model performance curves of hydro units, start-up costs, com-
mitment decisions and forbidden zones.

The cascaded configuration, stochasticity and price-maker
objective function were not considered in [27].

A price-maker formulation was considered in [14] and [15],
but the power output was assumed to be a linear function of the
water discharged, thus disregarding the head change.

Also, in [16] the residual demand curve (RDC) was deter-
ministic, whereas, it is stochastic in or paper, considering risk
aversion.

Hence, the contributions of the paper are four-fold:



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

POUSINHO et al.: RISK-CONSTRAINED SCHEDULING AND OFFERING STRATEGIES OF A PRICE-MAKER HYDRO PRODUCER UNDER UNCERTAINTY 3

1) A price-maker hydro producer owning a cascaded hydro
system with 7 reservoirs is modeled using an SMILP
approach, considering head dependence, commitment
decisions, discharge ramping, start-up costs and forbidden
zones;

2) Uncertainty about the competitors’ offers is adequately
represented with RDCs scenarios;

3) Risk management is suitably incorporated through condi-
tional value-at-risk (CVaR), providing the efficient frontier
used by decision-makers;

4) Appropriate offering strategies to a pool-based electricity
market are developed, consisting of supply functions built
for different risk levels.

The paper is structured as follows. Section II addresses the
issues related with the price-maker hydro producer considered.
Section III provides the nonlinear and equivalent SMILP
problem formulations, objective function and constraints.
Section IV illustrates the proposed formulation with a real case
study, and the conclusion is provided in Section V.

II. PRICE-MAKER HYDRO PRODUCER

In competitive electricity markets, the profitability of the gen-
erating companies depends not only on their own decisions, but
also on the decisions of the other companies.

Under perfect competition, the market share of every gen-
erating company is small and no company can affect the
market price. In this case, every company takes market prices
for granted when devising its offering strategy, acting as a
price-taker.

However, some generating companies may have a relatively
high market share and are capable of exercising their market
power, influencing market prices for their own benefit, meaning
that a perfect competition model cannot be used, since the com-
panies act as price-makers. When devising its offering strategy,
a price-maker hydro producer takes into account the fact that it
can affect market prices with its offers.

Our focus is to obtain the short-term operating strategy of a
single price-maker hydro producer. Modeling the interaction
among several price-makers’ strategies using game theory
(Nash-Cournot model) is available in [30]. The interaction
of the hydro producer with the other players is modeled by
RDCs in this paper. The RDC considers the market price like
a function (monotonically non-increasing) of the quota of the
producer [31], which in turn is the offered quantity that is
accepted by the market. Thus, the market price is obtained like
a function of the quantity that the price-maker company offers
to the market.

A. Residual Demand Curve (RDC)

The problem may be expressed as a nonlinear one with linear
constraints, since profit results of the multiplication of price by
the quota.

To overcome the difficulty of having a nonlinear optimization
problem, several linearizing methods can be adopted to define
the RDCs, namely using approximations of the following types:
1) polynomial; 2) piecewise linear; and 3) stepwise [31].

The method adopted in this work is characterized by a step-
wise approximation of the RDC, consistent with the way bids
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Fig. 1. Characteristic stepwise residual demand curve [33].

are made in most pool-based electricity markets. The stepwise
approximation provides a closer agreement between expected
and resulting prices, as stated in [31].

According to [32], the number of steps to describe a RDC
is small for fairly small changes in the quota, e.g., a variation
of 20% in the quota commonly results in less than 10 steps.
This provides a convenient framework for the construction of
the mentioned curves. Indeed, considering a high number of
steps may incur in high computation times or even intractability,
due to the overwhelming need of having binary variables for its
modeling.

Fig. 1 presents a characteristic stepwise RDC. This curve is
represented as a sequence of price-quota pairs [33] that may be
given linear constraints set with the use of binary variables that
define the active step.

The RDCs of a price-maker producer can be determined by
using market simulation or by employing forecasting methods.
The RDCs are considered in this paper as known data, as in [33].
A correlations study of RDC patterns can be seen in [34].

As mentioned before, one of our contributions is to model
uncertainty by a set of RDC scenarios.

The hydro producer must choose the hourly offer curves
which are submitted to the market, aiming for profit max-
imization. The single offer curve is made up of the points
of intersection amongst the RDC scenarios and the optimal
price-quantity bids; the curve should be increasing simultane-
ously in quotas and prices. All scenarios of a particular hour
are connected by increasing (monotonically non-decreasing)
constraints.

Fig. 2 shows three RDC scenarios and the corresponding
offer curve built through (g, &, Aw k s) pairs. Each RDC sce-
nario should have just one pair (qu &, Aw %) that should be
situated in the RDC curve.

B. Risk Management
Value-at-Risk, ¢, is defined as

VaR = Max (z |p{B <z} <1-14). (N
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Fig. 2. Supply curve constructed over (g &, Aw x,s) pairs.

CVaR is expected profit not surpassing (:
CVaR = E(B| B < (). 2)
The discrete formulation of CVaR is the following:

1
CVaR = Té‘zwemmg”“B’*“ 3)

A corresponding representation of CVaR is given by

0
1
C ¢ i — w Mw
VaR 1_5;0 7 4)
_[B. if B.<¢
”’“_{0 it B> ®)

The values of 6 are usually between 0.90 and 0.99 [35], thus
in this paper it is regarded identical to 0.95. Hence, CVaR can
be formulated as

Q
1
M - — o T 6
ax ¢ 1_5/210 7 (6)
subject to T
Nw 2> 0. ®)

III. STOCHASTIC PROBLEM FORMULATION

The problem consists in determining the optimal price-quota
combination that maximizes the total profits of a price-maker
hydro producer in a day-ahead pool-based electricity market.

A. Nonlinear Problem Formulation

The operation of a hydro producer performing as a price-
maker can be mathematically modeled as

K

Q J
Max Z Puw Z vak(Qw,k:)Qw,k - Z Sijw,j,k (9)

k=1 =1
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subject to

poik €l YweQ, Vied Vkek (10)

J
ok = D Pujk WwEQ VhEK. (11

=1

The first term in (9) provides the revenue of the hydro pro-
ducer coming from the market, while the second term corre-
sponds to the start-up costs. The first term is nonlinear, since
the producer’s revenue is resulting from the multiplication of
price and quota.

The set of constraints (10) allows us to model the technical
features of the hydro units, such as the start-up and shutdown
procedures, discrete hydro unit commitment constraints, ramp
rates, minimum and maximum power output constraints, and
the head effects using an improved linearization method as in
[11] and [27]. The set of constraints (11) sets the quota of the
price-maker as the total power output summation of its units for
each period.

B. Equivalent SMILP Problem Formulation

The previous optimization problem cannot be directly solved
using standard software due to its discontinuous, nonlinear, and
large-scale nature. To overcome this difficulty it is assumed that
the RDCs can be expressed as stepwise curves. An equivalent
formulation of the problem based on SMILP is presented here-
after, using continuous and binary variables.

1) Objective Function: The problem can be defined as

0 K TS
MaX Z Puw Z Z Au),k:,s (fw,k‘,s + Uu,k,sqglfl?,s)
w=l k=1 Ls=1
J -| ;&
- jX_leijw,k,jJ +o|d- ;p;] . (12)

The objective function (12) to be maximized incorporates
the revenue, the start-up costs and CVaR term multiplied by a
weighting positive parameter, o € [0, co[, required to attain a
proper trade-off between risk and profit. A risk-neutral hydro
producer corresponds to & = (), while a risk-averse hydro pro-
ducer corresponds to large values of «v. In either case the so-
lution obtained always has an associated profit standard devia-
tion (STD). The producer’s revenues are estimated by a stepwise
function employing binary variables, as shown in Fig. 1.

2) Risk Constraints: These constraints are defined as

follows:
S J
- Z Z /\wk,s(bwk’,s + u“’k*sgwk.s) - Z Sljijk‘,j
k=1s=1 =1
+C¢—n,<0 13)
Nw 2 0. (14)

In (13), ., is an auxiliary variable that is identical to zero if
profit is greater than the (; otherwise, 7)., is given by the differ-
ence among them.
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3) Price-Maker Constraints: These constraints are defined
as follows:

J
ok = Zp,”k YVweQ VkeK (15)
j=1
S .
qu k. = Z (fw:k,s + U/.uksqfl’l;?’s) YVwe), VieK
s=1
(16)

0< fw,k,s < Ui ks, ok

w,k,s
VweQ, Vjeld, VkeK (17)
S

usks=1 VweQ, VEeK, VseS.

s=1

(18)

The set of constraints (15) is identical to (11). The set of con-
straints (16) defines the value of producer’s quota, ¢, x, in all
hours, depending on the variables f,, x s and u, i . The quota’s
minimum value for step s is established as g™ (note that
qjj.{i,?’ | = 0,Vk), while nonnegative continuous variables f., 4 ,
provide the added portion of step s that is occupied.

In (17) the lower bound takes nonnegative values for f, s,
while the upper bound doesn’t surpass the quota’s maximum
value for the selected step s of the RDC in period k; if step s is
not chosen, u,, s = 0, then the upper bound of f x  is null
and, thus, f, s = 0.

In (18) the binary variables summation that characterizes
every step s of RDC in period % is equal to one. This means that
just one variable, u., i s, is active in each period, selecting the
optimal step that aggregates the producer’s quota. If u, v = 1
then only the step s is selected for period k.

4) Market Offer Constraints: These constraints are defined
as follows:

Gu.k — qu' k _ngw,w',k vw./w/ € Sz, vk e K

=
Gu' k — Guk Z *(1 - ngw’,k)Mq
Yu,w' €Q, Vke K (20)

19

) S
E )\w,k,s“w,k,s - E )‘w’,k,suw’,k,s Z _Mpgw,w’,k

s=1

YVu,w' e, VYkeK, VseS (21)

s=1

S S
E )\w/,k‘,suw’:k,s - E )\w,k,s”w,k,s Z _(1 - gw,w’,k)iwp
s=1 s=1

Yo, ol €Q, Vke K, VseS. (22)

These conditions are imposed for each pair of offers (w, w’)
to ensure that only monotonically non-decreasing offers are sub-
mitted to the market, as seen in Fig. 2.

Accordingly to Fig. 2, each RDC scenario should have just
one pair (¢, k, Aw ks ) Which should be situated in the RDC. M ¢
and M? represent a large quota and a large price, respectively.
If g, & = 0, constraints (19) and (21) are active, whereas, if
9wk = 1, constraints (20) and (22) are active.

5) Hydro Constraints: These constraints are defined as
follows:

Dok — Plor (twjn) =0
YweQ, Vield VYhkeK (23)

Vu, gk = Vw,ik—1 T G5k

+ E (tw,m,kf‘rmj + Sw,m,kfrmj)
m € M;

—toik—Sejk YwES Vijeld VkEeK (24)
,U;.nin Sk 0™ YweQ, Vield VkeK

(25)
Yljw.’A,‘?ktljnin S tw,j,k S 71)w’j7kt}nax
Vw,e 2, VjedJ VkeK (26)
togk — I <tojntr Stoje+ R
Yw,eQ, VjelJ VkeK (27
P < p g < PP
YVweQ Vijeld VkeK (28)
Swik >0 YweQ, Vield VikeK (29)
Yo 3.k — Bw,jk = Wy 5.k — Wy 5 k—1
Yw.e Q, VjelJ VkeK (30
Yojh T 2ok <1 Vwe, Vijeld VkeK (@31
tw,j,k — ZTj,'iﬂ-w,j,k,i =0
i€z
YVweQ Vijeld VkeK (32
Z T jki — Wo ik =0
i€z
VweQ Vijeld VkeK (33)
Togki — Mo jki <0
Ywef Vijeld VieK (34
My jki+ Mo el <1
YweQ, Vjeld VkeK, VieZ:i<l-1 (35
S dojrs=1 YweQ, VielJ VkeK (36
reR
P ik — ZPj,i,rﬂw,m,qj — AP, (1 —dyjrr) <0
i€z
YVweQ Vjeld VkeK (@37
Uu;,j,k: - Z Hj,rfldw,j,k;r 2 0
reR
YweQ Vjeld VkeK (38
Vo ik — z Hj.d,jrr <0
reR
YVweQ Vijeld VkeK (39
Vogo=v" YweQ, Vjeld VkeK (40)
vojr =0 VweQ, Vjeld VkeK. (41)

In (23) the power output, p,, ; x, is connected to water dis-
charged and characteristics of the reservoir.

An improved method of linearization is implemented consid-
ering the head change effect. This method corresponds to: an im-
provement of [11] for a parametric value of water volumes, and
a more accurate assessment of the power output upper bound
using a convex mixture methodology taking into account both
discharges and volumes [27]. Three preset water volume quan-
tities H; ;- are implemented. The pq, ;1 — ¢u j» relation is de-
noted by a linear piecewise estimation with 4 breakpoints for
each water volume.

Equation (24) represents the continuity equation (water bal-
ance) for the reservoirs. In (24) it is assumed that the water travel
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time between consecutive reservoirs is less than 1 hour, due to
the distances involved.

In (25), the upper and lower water volume bounds are defined.
In (26), the same happens for the water discharged. The binary
variable w., ; 1 is identical to 1 if plant j is working in period k;
else, it is identical to zero. Constraints on discharge ramp rates
are implemented in (27). In (28), the upper/lower bounds on
power output are defined. Equation (29) defines water spillage
as a null or non-negative value. Equations (30) and (31) model
the start-up and shutdown of hydro plants.

Constraints (32)—(39) complete the model (12)-(31) ap-
proaching the power output function (23) by a parametric value
of water volumes.

Equations (32)—(33) express the water to be discharged by
plant j in period k. According to (34), 7., j x.; may be nonzero
only when the related binary variable 1, ; x.; is equal to one.
Note that 0 < 7, ;x: < 1.

Equation (36) establishes the logical value of the d variables
responsible for determining the volume intervals. Equation (37)
expresses the power output, p,, ; ¢, for interval 7.

Equations (38) and (39) define, for every period %, the two
farthest water volumes within the interval in which the water
volume, v, is calculated. In (40) and (41), the initial and final
reservoir volumes are set.

The algorithm used to solve the entire problem is represented
with a flowchart in Fig. 3. The major steps involved in the algo-
rithm implementation are described as follows.

Step 1: Obtaining the information about the RDC scenarios
of the price-maker hydro producer for each hour of the bid-
ding period. In this problem, RDC scenarios are assumed
to be known.

Step 2: Initializing the weighting parameter {«v = 0).

Step 3: Solving the SMILP hydro producer problem
(12)—~(41) described previously. Once the solution is
obtained, the hydro producer derives its optimal hourly
supply function, i.e., the optimal price and energy amount
that the hydro producer needs to offer in every period.
Step 4: After obtaining the optimal offers, update the
weighting parameter, «. If the chosen value of « has been
obtained, the simulation is concluded; else, the simulation
will continue in the previous step.

Step 5: Finally, taking into account the portfolio of the op-
timal solutions for all weighting parameters, it is possible
to build the efficient frontier.

IV. CASE STUDY

The SMILP problem formulation has been tested on a repre-
sentative cascaded hydro system with 7 reservoirs, as the one in
the Douro River in Portugal. The hydro data and topology can
be seen in [12].

The modeling is carried out in MATLAB environment [36]
and solved using CPLEX 12.1, considering a 3.47-GHz dual
processor with 48 GB RAM.

A pre-defined final water storage is included equal to 80%
of the maximum storage. Storage targets can be derived from
medium-term models [37].

The start-up costs of the hydro units are assumed to be given
by SU; = pj** x 2.5 [8], and forbidden zones are taken into ac-
count using (26). The time horizon is one day, since a day-ahead
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Fig. 3. Flowchart of the algorithm.
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Fig. 4. RDCs scenarios using 5 steps at hours 10, 11, 15, 16, 22, and 23.

market is considered The RDCs are given as stepwise functions
with 5 steps. The total number of RDCs scenarios is 10.

Fig. 4 presents the RDCs scenarios at hours 10, 11, 15, 16, 22,
and 23. The optimal solution corresponds to the specific points
that define the offering strategies for each RDC. Table I provides
the dimension of the optimization problem.

The efficient frontier curve, built in terms of the expected
profit versus STD of profit, is given in Fig. 5 for six values of .
Analyzing Fig. 5 it can be seen that a risk-neutral hydro producer
(o = 00) aims to achieve a $266 060 profit with a $25 522 STD.
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TABLE I
CHARACTERISTICS OF THE CASE STUDY

# SMILP Problem Formulation
Constraints 47770
Continuous variables 14891
Binary variables 19080

x 10

2.66

»

(=

N
T

Expected profit ($)

2.621

2.6 ; '
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Fig. 5. Expected profit versus profit STD.
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Fig. 6. Hydro units’ generation in scenario 3 and risk level o = 0.
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Fig. 7. Hydro units’ generation in scenario 3 and risk level & = 1.

TABLE III
COMPUTATIONAL RESULTS OBTAINED FOR SCENARIO 3
Risk Level Av. Market Price (§/MWh) Av. Quota (MW)
0.0 21.92 537.65
1.0 19.96 541.21

TABLE II
PROFIT VARIATION FOR SOME RISK LEVELS

Risk Profit St. CVaR Expect. Decrease | Computation
Level | Dev.($) ©) Profit ($) (%) Time (s)

0.0 25,522 238,576 266,060 - 1405

02 24,185 241,488 265,050 0.38 1458

0.4 23,396 245207 264,430 0.61 1500

0.6 22,061 247,200 262,953 1.17 1541

0.8 21,413 248,249 262,050 1.51 1573

1.0 20,701 249,199 260,901 1.94 1592

On the contrary, a risk-averse hydro producer (o = 1) expects
a lower profit of $260 901, with a lower STD, $20701.

Table II establishes the profit variation for different levels of
risk, ranging from a risk-averse to a risk-neutral hydro producer.
The expected profit increases about 2% from o« = 1 to v = 0.
Nevertheless, the STD of the profit may also increase signifi-
cantly. Also, it can be seen in Table II that a CVaR increase of
about 4.5% diminishes expected profit almost 2%. Hence, di-
verse hydro producers can have different attitudes towards risk,
considering Fig. 5 and Table II.

Figs. 6 and 7 provide the power output of each plant for risk
levels & = 0 and «« = 1, respectively. Hydro generation is ad-
equately distributed along the day to obtain the optimum inter-
sections with the RDCs, i.e., the best combination (quota, price)

in each hour for expected profit maximization. Note that the
risk-averse hydro producer shown in Fig. 7 produces a relatively
high amount of energy due to lower electricity prices.

Table I1T shows that the average market price for a risk-averse
hydro producer (o = 1) is lower than the price of a risk-neutral
hydro producer (« = 0).

As a consequence of the lower average market price obtained
by the risk-averse hydro producer, its average quota is slightly
higher. Nevertheless, the price-quota combination achieved by
the risk-neutral hydro producer is more profitable but at the ex-
pense of having higher values of the STDs, as shown in Fig. 5
and Table II.

The mean hourly production for the risk-neutral producer is
illustrated in Fig. 8, while the respective mean market prices are
illustrated in Fig. 9. Fig. 8 is equivalent to the quotas summation
for all scenarios in every period £. According to Figs. 8 and 9,
market prices do not commonly follow the quota variation of
the hydro producer during the day, meaning that market power
is enforced. This variation pattern may be employed to monitor
market power.

Fig. 10 provides the offer curves to the market for the whole
system as a group, considering both risk-neutral (&« = 0) and
risk-averse (&« = 1) hydro producers. It can be realized that,
usually, offers for « = 0 present higher prices for smaller
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Fig. 10. Hourly supply functions for levels of risk o« = 0([0) and o = 1(A).

amounts of energy offered, in order to increase the expected
profit. Nevertheless, this is not always the case, as can be seen
for hours 11 and 22 in Fig. 10.

Taking into account the mean value of the production and
the market prices in each period, shown in Figs. 8 and 9, re-
spectively, a risk-neutral hydro producer can vary the amount
of market power exerted depending on the energy block chosen
through those supply curves depicted in Fig. 10.

To assess the effectiveness of the stochastic approach over a
deterministic approach, the value of stochastic solution (VSS)
has been determined. The VSS is given by

VSS = z5% — zD* (42)
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as Z5* and ZP* represent optimal objective function values of
stochastic and deterministic problems, respectively.

To have a fair and unambiguous comparison, constraints
(19)—(22) were not included in this comparison. VSS is
given by VSS = $295 026 — $271 198 = $23 828, i.e.,
VSS(%) = 8.79%.

Note that $271 198 is the average profit achieved for the deter-
ministic problem. The solution obtained using the stochastic ap-
proach is noticeably better than using a deterministic approach.

Hence, the SMILP approach is simultaneously accurate and
computationally satisfactory.

V. CONCLUSION

RDCs scenarios and risk-aversion using CVaR are simultane-
ously considered in the optimal scheduling and strategies’ de-
velopment of a hydro producer performing as a price-maker.
All major hydro generation technical characteristics are mod-
eled through a stochastic mixed-integer linear programming for-
mulation. The good performance of the decision making proce-
dure is tested using a case study based on a real hydro chain
in Portugal where head dependence plays a major role. The
trade-off between maximizing profit and minimizing risk is pro-
vided by the efficient frontier curve, which represents an impor-
tant added-value to the decision makers. The optimal combina-
tion of price-quantity bids allows us maximizing the hydro pro-
ducer’s expected profits in the market. This is reflected in greater
expected profits attained by the risk-neutral hydro producer at
the expense of higher STDs. The value of the stochastic solu-
tion shows a 9% improvement over the deterministic solution.
Furthermore, the computation time is acceptable, according to
the large number of continuous and binary variables, showing
the value of the approach.
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