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Optimal Offering Strategies for Wind Power
Producers Considering Uncertainty and Risk
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Abstract—This paper provides a two-stage stochastic
programming approach for the development of optimal offering
strategies for wind power producers. Uncertainty is related to
electricity market prices and wind power production. A hybrid
intelligent approach, combining wavelet transform, particle
swarm optimization and adaptive-network-based fuzzy inference
system, is used in this paper to generate plausible scenarios.
Also, risk aversion is explicitly modeled using the conditional
value-at-risk methodology. Results from a realistic case study,
based on a wind farm in Portugal, are provided and analyzed.
Finally, conclusions are duly drawn.

Index Terms—Artificial intelligence, forecasting, risk analysis,
stochastic programming, uncertainty, wind power.

Nomenclature

S, s Set and index of scenarios.
H, h Set and index of hours in the time horizon.
ζ Value-at-risk.
α Per unit confidence level.
ηs Auxiliary variable used to compute the conditional

value-at-risk.
β Weighting parameter to achieve an appropriate tradeoff

between profit and risk.
ρs Probability of occurrence of scenario s.
λsh Forecasted electricity market price in scenario s in

period h.
r +

sh Ratio between positive imbalance price and day-ahead
market price in scenario s in period h.

r−
sh Ratio between negative imbalance price and day-ahead

market price in scenario s in period h.
psh Power output of the wind farm in scenario s in

period h.
xh Offer by the wind power producer in the day-ahead

market for period h.
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devsh Deviation for wind production in scenario s in pe-
riod h.

Pdevsh Penalization for deviation of the wind farm in sce-
nario s in period h.

Wsh Forecasted wind power production in scenario s in
period h.

Pmax Maximum power of the wind farm.
Lsh Revenue in scenario s in period h.
c Vector of the objective function coefficients.
x Vector of decision variables in the first-stage.
A Matrix of coefficients for the first-stage constraints.
bmin Lower bound vector for the first-stage constraints.
bmax Upper bound vector for the first-stage constraints.
xmin Lower bound vector on variables.
xmax Upper bound vector on variables.
hmin

ω Lower bound vector for the second-stage constraints.
hmax

ω Upper bound vector for the second-stage constraints.
qω Vector of coefficients for the linear term for the

second-stage variables.
Tω Technology matrix.
Wω Recourse matrix.
yω Second-stage variables that represent decisions to be

made after part of the uncertainty is revealed.

I. Introduction

AMONG THE renewable energy technologies, wind tur-
bine technology is now the world’s fastest growing

energy resource [1], [2]. The increased integration of wind
power into the power grid, as nowadays occurs for instance
in Portugal, presents several technical challenges [3] due to
its intermittency [4]. Unlike thermal systems [5] or hydro
systems [6], which are traditional dispatchable power sources,
wind power is undispatchable [7] and constitutes a major
source of uncertainty in the planning and operations of power
systems.

All over the world, the electricity industry is shifting from
regulated to competitive. Until recently, the electricity industry
was viewed as a natural monopoly, organized as regulated
and vertically-integrated. Nowadays, the electricity industry
adopted a market framework, thus introducing competition
between producers for selling electric energy to consumers.

Under this market framework, the development of optimal
offering strategies is crucial for all producers to achieve
maximum profit. Background on market operations in power
systems can be found, for instance, in [8].
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Electricity prices present high volatility, reflecting the dy-
namic behavior of the market. Besides, the power supply
generated from wind energy is highly intermittent. Thus,
decision-makers must hedge against the uncertainties on elec-
tricity market prices and wind power production, while taking
into account the several technical constraints associated with
the operation of the wind farm.

To consider the uncertainties on electricity market prices
and wind power production requires stochastic programming
[9]. Hence, in this paper a two-stage stochastic programming
approach is presented, dividing the set of decisions inherent
to the problem into two distinct stages: first-stage decisions,
taken before resolving the uncertainty, second-stage decisions,
made after the uncertainty occurs.

The aforementioned uncertainties were handled in [10]
through traditional time-series models. Instead, an artificial
intelligence model is considered in this paper to generate price-
wind power scenarios using a tree format.

A scenario tree represents the different stages that can
take the random parameters, i.e., different realizations of
uncertainty. This scenario tree can be adequately trimmed
via scenario reduction techniques [11], so that the resulting
optimization problem is tractable.

Risk aversion is also incorporated in the proposed stochas-
tic programming approach by limiting the volatility of the
expected profit through the conditional value-at-risk (CVaR)
methodology [12]–[14].

The proposed approach allows generating the optimal
offers that should be submitted to the day-ahead market by
a wind power producer, in order to maximize its expected
profit assuming a given level of risk. In case of excessive
or moderate offers, other producers must reduce or increase
production to fill the so-called deviation, causing economic
losses. These economic losses are reflected into imbalance
penalties in the balancing market.

This paper is organized as follows. Section II presents
the formulation of the risk-constrained profit-maximization
decision-making problem faced by a wind power producer
within the market framework. Section III describes the
stochastic programming approach, including the decision
framework, the uncertainty characterization, and the scenario
tree. Section IV provides and analyzes results from a real-
istic case study, based on a wind farm in Portugal. Finally,
Section V draws appropriate conclusions.

II. Problem Formulation

The optimization problem can be stated as to find out the:

1) offers submitted to the day-ahead market;
2) wind power production;
3) maximum profit at a given risk level;
4) imbalance penalties.

The problem formulation uses an absolute value function,
since it can be expressed in the context of linear programming
by adding some auxiliary variables for positive and negative
deviations.

Fig. 1. VaR and CVaR illustration.

A. Risk Measure (CVaR)

CVaR represents an appropriate approach to address the
integrated risk management problem of a wind power pro-
ducer. Previous approaches [15]–[17] did not consider risk
management.

CVaR is the expected profit not exceeding a measure ζ

called value-at-risk (VaR)

CVaR = E(B|B ≤ ζ). (1)

VaR is a measure computed as the maximum profit value
such that the probability of the profit being lower than or equal
to this value is lower than or equal to 1 − α

VaR = max {x|p (B ≤ x) ≤ 1 − α} . (2)

VaR has the additional difficulty, for stochastic problems,
that it requires the use of binary variables for its modeling.
Instead, CVaR computation does not require the use of binary
variables and it can be modeled by the simple use of linear
constraints.

The concept of CVaR is illustrated in Fig. 1. The technical
literature refers that α assumes values usually between 0.9 and
0.99 [18]. In this paper, α is considered equal to 0.95.

Mathematically, CVaR can be defined as follows:

max ζ − 1

1 − α

S∑
s=1

ρsηs (3)

subject to

−Bs + ζ − ηs ≤ 0 (4)

ηs ≥ 0. (5)

In (4), ηs is a variable which is equal to zero if scenario s

has a profit greater than ζ. For the remaining scenarios, ηs is
equal to the difference of ζ and the corresponding profit.
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B. Objective Function

The risk-constrained profit-maximization decision-making
problem faced by a wind power producer within the market
framework is summarized as follows:

F =
S∑

s=1

ρs

H∑
h=1

[
λsh psh − Pdevsh

]
+

+β

(
ζ − 1

1 − α

S∑
s=1

ρsηs

)
. (6)

The objective function (6) to be maximized includes the
expected profit of the wind power producer, and the CVaR of
the profit multiplied by the weighting parameter β.

The objective function represents the total profit on the
sale of wind energy in each scenario s, taking into account
the probability of occurrence ρs, less a penalty for deviations
from the bids, in which λsh is the forecasted electricity market
price in scenario s in period h. The deviations are measured
in absolute value, and can be generated by excess or deficit
of energy

devsh = |psh − xh| . (7)

The penalty for the deviation corresponds to the product of
the cost for the shifted power in absolute value

Pdevsh =

{
λsh r+

sh devsh, dev sh ≥ 0
λsh r−

sh devsh, dev sh < 0 .
(8)

The revenue is given by the product of the expected market
price by the power output of the wind farm

Lsh = λsh psh. (9)

The expected profit is calculated as the difference between
the revenue of the wind farm and the penalization for deviation

F = Lsh − Pdevsh. (10)

Substituting (8) into (6) gives

F =
S∑

s=1

ρs

H∑
h=1

[
λsh psh − λsh r+

sh d+
sh − λsh r−

sh d−
sh

]
+

+β

(
ζ − 1

1 − α

S∑
s=1

ρsηs

)
. (11)

C. Constraints

For a given total energy deviation devsh = d+
sh − d−

sh the
optimal solution is guaranteed to be achieved with one of the
variables d+

sh or d−
sh equal to zero, due to the fact that r+

sh ≤ 1
and r−

sh ≥ 1

psh − xh − d+
sh + d−

sh = 0. (12)

In order to make the offers to the market, it is required to
satisfy the technical restrictions of the wind farm.

So, the optimal value of the objective function is determined
subject to inequality constraints or simple bounds on the
variables.

The constraints are indicated as follows:

0 ≤ d+
sh ≤ Wsh (13)

0 ≤ d−
sh ≤ Pmax. (14)

Constraints (13) and (14) impose caps on the positive and
negative deviations, respectively. Wind power is limited supe-
riorly by the value of the forecasted wind power production,
Wsh, in scenario s in period h.

In (15), the offers are limited by the maximum power
installed in the wind farm Pmax

0 ≤ xh ≤ Pmax. (15)

In (16), ηs is a variable whose value is equal to zero if the
scenario s has a profit greater than ζ. For the rest of scenarios,
ηs is equal to the difference of ζ and the corresponding profit

−
H∑

h=1

[
λsh psh − λsh r+

sh d+
sh − λsh r−

sh d−
sh

]
+ζ−ηs ≤ 0 (16)

ηs ≥ 0. (17)

D. Linearization of the Objective Function

The objective function, given in the previous subsection,
is characterized by nonlinearities due to the existence of an
absolute value. So, it is required to use a mathematical process
that allows reformulating into a linear problem.

In this subsection, the problem involving absolute value
terms is transformed into a standard linear programming
formulation. Initially, it is considered that

Max F = cTx − | x | (18)

subject to

xmin ≤ x ≤ xmax (19)

x ∈ Rn. (20)

In (18), the function F (·) is an objective function of
decision variables, where c is the vector of coefficients for
the linear term.

In (19), xmin and xmax are the lower and upper bound vectors
on variables. The variable x is a set of decision variables.

Subsequently, absolute-valued variables are replaced with
two strictly positive variables

| x | = x+ + x−. (21)

In addition, each variable is substituted by the difference of
the same two positive variables, as

x = x+ − x−. (22)

The equivalent linear programming problem is given by

Max F = cTx − (x+ + x−) (23)

subject to

xmin ≤ x ≤ xmax (24)

x = x+ − x− (25)

x+ ≥ 0 , x− ≥ 0. (26)
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III. Stochastic Programming Approach

A. Decision Framework

A time horizon of one day is considered. Within this time
horizon the wind power producer must decide: 1) hourly offers
to be submitted to the day-ahead market, and 2) wind power
production in each hour for a given scenario.

Within the stochastic programming approach, two different
kinds of decisions can be distinguished.

On the one hand, the decisions that are made before
knowing the actual values of the stochastic variables are known
as first-stage or here-and-now decisions, since we have to make
them before knowing the actual scenario realization. These
decisions correspond to the hourly offers to be submitted to
the day-ahead market.

On the other hand, the decisions that are made after knowing
the actual values of the stochastic variables are known as
second-stage or wait-and-see decisions, since we assume that
the corresponding scenario has realized before making such
decisions. These decisions correspond to the wind power
production in each hour for a given scenario.

B. Uncertainty Characterization

Uncertainties of electricity market prices and wind power
production are handled by treating them as stochastic vari-
ables. To generate price and wind power scenarios, time-series-
based models, such as ARIMA [10], or artificial intelligence
models, such as neural networks [19], data mining [20] and
evolutionary computation [21], can be used.

A hybrid intelligent approach, combining wavelet trans-
form (WT), particle swarm optimization (PSO) and adaptive-
network-based fuzzy inference system (ANFIS), is used in
this paper to generate a large enough number of equiprobable
scenarios, that adequately represent the probability distribution
of electricity market prices and wind power production over
the day.

The WT convert a wind power or price series in a set of
constitutive series, forecasted using ANFIS. The PSO is used
to improve the performance of ANFIS, tuning the membership
functions required to achieve a lower error. Indeed, PSO has
turned out to be an outstanding optimizer due to its ability to
elegantly handle difficult optimization problems as well as its
exceptional convergence performance [22]–[24].

C. Scenario Tree

A scenario tree is a set of nodes and branches used in models
of decision-making under uncertainty. The nodes represent
the points where decisions are made, while the branches are
different realizations of the stochastic variables. Each node has
only one predecessor and can have several successors. The first
node is called the root node. In the root node, the first-stage
decisions are taken. The nodes in the last stage are called
leaves. The number of leaves equals the number of scenarios
[25], [26].

Fig. 2 shows the scenario tree that is used to represent the
first-stage and second-stage decisions.

For the sake of problem tractability, it may be convenient
to reduce the size of the scenario tree. The scenario tree

Fig. 2. Scenario tree.

trimming consists in finding a new tree composed by a subset
of scenarios belonging to the original tree that is close to the
original tree according to a specific probability distance.

A scenario-reduction technique provides an efficient way
to select a representative subset of scenarios covering most
scenario realizations, plausible and extreme.

A fast-forward reduction algorithm is described in [11]. This
algorithm is an iterative greedy process starting with an empty
tree that in each iteration selects the scenario which minimizes
the probability distance between the original and the reduced
trees.

D. Two-Stage Stochastic Programming

The two-stage stochastic programming model can be for-
mulated as follows:

Max cTx + E[max
yω

qT
ω yω] (27)

subject to

bmin ≤ Ax ≤ bmax (28)

hmin
ω ≤ Tω x + Wω yω ≤ hmax

ω (29)

x ≥ 0, yω ≥ 0 (30)

where c is a vector of the objective function coefficients for the
x variables in the first-stage, bmin and bmax are the lower and
upper bound vectors for the first-stage constraints, and A is the
matrix of coefficients for the first-stage constraints. For each
ω, hmin

ω and hmax
ω are the lower and upper bound vectors for

the second-stage constraints, qω is vector of coefficients for the
linear term for the second-stage variables, Tω is the technology
matrix, and Wω is the recourse matrix under scenario ω.

In the first stage, the decision should be taken before the
uncertainties represented by x are known. In the second stage,
where the information x is already available, the decision is
made about the vector y.

The first-stage decision of x depends only on the in-
formation available until that time; this principle is called
nonanticipativity constraint.
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Fig. 3. Layout of the constraints associated with two stages.

Fig. 4. Electricity market price scenarios considered in the case study.

The problem of two stages means that the decision x is
independent of the achievements of the second stage, and thus
the vector x is the same for all possible events that may occur
in the second stage of the problem.

E. Deterministic Equivalent Problem

The stochastic model is usually a difficult computational
problem, so it is common to choose the deterministic model
solution using the average of random variables or solving a
deterministic problem for each scenario.

The problem shown in the previous subsection is equiva-
lent to the so-called deterministic equivalent one that in the
splitting variable representation is as follows:

Maxx,ys
cTx +

S∑
s=1

ρsq
T
s ys (31)

subject to

bmin ≤ Ax ≤ bmax (32)

hmin
s ≤ Ts x + Ws ys ≤ hmax

s for s = 1, . . . ,S (33)

x ≥ 0, ys ≥ 0 for s = 1, . . . ,S. (34)

The matrix composed by (32) and (33), for large-scale linear
problems, can be generally represented according to Fig. 3.

Fig. 5. Wind power scenarios considered in the case study.

Fig. 6. Optimal hourly bids for a risk level corresponding to β = 0.2.

IV. Case Study

The proposed approach has been developed and imple-
mented in MATLAB, and solved using the optimization solver
package CPLEX. The numerical simulation has been per-
formed on a 2 GHz based processor with 2 GB of RAM.

The proposed approach has been applied on a realistic
case study, based on a wind farm in Portugal located in the
Castelo Branco region (Gardunha). The total installed wind
power capacity is 114 MW, corresponding to 57 2.0 MW wind
turbines.

The proposed approach takes into account the uncertainty
in both wind power and electricity market prices by using
scenarios in a stochastic optimization problem. Imbalance
penalties are imposed to prevent gaming and to secure better
system operation [27].

The time horizon chosen is one day divided into 24 hourly
periods. This case study is composed of ten electricity market
prices scenarios (Fig. 4) and ten wind power scenarios (Fig. 5).

Besides, ten imbalance price ratio scenarios are taken into
account. Thus, the total number of scenarios generated in the
optimization problem is S = 1000. The probability of each
generated scenario will be 1/S. Table I summarizes the data
of the scenarios.
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TABLE I

Scenarios Considered, Number, and Probability

Number of Scenarios Probability
Price scenarios 10 0.10
Wind scenarios 10 0.10
Imbalance price ratio scenarios 10 0.10
Total scenarios 1000 0.001

Fig. 7. Optimal offers to be submitted to the day-ahead market, and wind
power production, for a risk level corresponding to β = 0.2.

Fig. 8. Deviations resulting from the difference between the offers and the
wind power production for a risk level corresponding to β = 0.2.

The solution of the optimization model contains the optimal
bids for the daily market. The optimal bids, shown in Fig. 6,
are common to the 1000 scenarios, thus posing a robust
solution against all of them, although not necessarily optimal
in any one.

Choosing one scenario of the problem, it can be verified in
Fig. 7 that the wind farm adjusts its production to minimize
deviations. Nevertheless, in almost every hour there are small
differences between the offers and the power output of the
wind farm.

The deviations resulting from the difference between the
offers and the wind power production are shown in Fig. 8.

Fig. 9. Expected profit versus profit standard deviation.

TABLE II

Comparison of the Increase in Profit for Several Risk Levels

Risk Level Profit Standard Expected Profit % Increase CPU Time
Deviation (D ) (D ) (s)

1.0 1347 28 262 − 1.45
0.9 1361 28 285 0.08 1.31
0.8 1382 28 306 0.16 1.22
0.7 1433 28 391 0.46 1.13
0.6 1499 28 529 0.94 1.05
0.5 1552 28 599 1.19 0.98
0.4 1596 28 667 1.43 0.94
0.3 1709 28 779 1.83 0.91
0.2 1856 28 881 2.19 0.89
0.1 1934 28 903 2.27 0.80
0.0 2114 28 939 2.40 0.75

For instance, a negative deviation means that the wind power
production was lower than the offer submitted to the day-ahead
market.

The expected profit versus profit standard deviation is pre-
sented in Fig. 9, considering seven values for β. A confidence
level α = 0.95 is used to compute the CVaR in all instances.

Fig. 9 provides the maximum achievable expected profit for
each risk level or, alternatively, the minimum achievable level
of risk for each expected profit. This figure, known as efficient
frontier or Markowitz frontier, presents a curve that contains a
set of solutions to help the wind power producer in decision-
making taking into account the intermittency and volatility of
wind power and the uncertainty of electricity prices.

The main objective is to provide a portfolio with various risk
levels. Each level of risk implies a different expected profit and
its associated standard deviation.

An analysis of Fig. 9 reveals that for a risk-neutral producer
(β = 0) the expected profit is 28 939 D with a standard devia-
tion of 2114 D . Instead, a risk-averse producer (β = 1) expects
to achieve a profit of 28 262 D with a lower standard deviation
of 1347 D .
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Fig. 10. Dispersion of profit for different risk levels.

Fig. 11. Level of risk versus optimal offers for hours 10, 12, 23, and 24.

Table II establishes a numerical comparison of the increase
in profit for several risk levels. The maximum profit represents
an increase of 2.40% corresponding to risk level β = 0.
Nevertheless, the profit standard deviation is significantly
higher for β = 0. Hence, the wind power producer may choose
different behaviors toward risk. Based on the results obtained,
the risk level suggested is between β = 1 and β = 0.4. Risk
levels lower than or equal to β = 0.3 are not recommended.

Also, according to the results, it appears that the proposed
approach is influenced by the volatility of the stochastic
variables involved in the optimization process (intermittency
and volatility of wind power and the uncertainty of electricity
prices).

In this sense, it is concluded that the higher the volatility,
the more advantageous is the use of stochastic methodologies
supported by prediction tools. Stochastic programming can
increase the expected value of profit distribution, keeping
under control the risk of profit variation.

Fig. 12. Level of risk versus optimal offers for hours 1, 7, 8, and 9.

The dispersion of profit for the 1000 scenarios is shown in
Fig. 10.

The expected profit is higher for β = 0, but the dispersion
of profit is also much more relevant compared with other risk
levels. Instead, the lowest dispersion of profit is attainable
for β = 1. Hence, a more conservative wind power producer
toward risk expects a lower variability of the expected profit.

Figs. 11 and 12 provide the variation in the risk level in
relation to the offers submitted by the wind power producer. It
can be seen that, depending on the particular hour considered,
the behavior of the curve can assume a different tendency.

V. Conclusion

Aiming for adequate decision-support tools for a wind
power producer under different uncertainties, related to elec-
tricity market prices and wind power production, a stochastic
programming approach was proposed in this paper, along with
a hybrid intelligent approach to generate price-wind power
scenarios. Risk aversion is also incorporated by limiting the
volatility of the expected profit through the CVaR method-
ology. The proposed approach allows evaluating alternative
production and offering strategies to be submitted to the
market. A realistic case study, based on a wind farm in
Portugal, is considered. It can be concluded that a better
short-term operation of the wind farm is achieved, assuring
simultaneously a negligible computation time.
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