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Abstract—Electric vehicles (EVs) are developing due to 
concerns over global warming and the major role of the 
transportation sector in emissions. EVs can also flatten the power 
curve and increase the reliability of power grids when renewable 
energy sources are used. Despite of these benefits, EVs impose 
new loads on distribution networks. Simultaneous charging of 
EVs, especially at high penetration levels, can create new load 
peaks in the power curves as well as overloading transformers, 
shortening their service life. In actual applications, most electric 
cars are single-phase loads that need to be charged from 
household or commercial outlets. In this paper, an optimization 
method is presented to coordinate the dynamic charge operation 
of single-phase EVs in an unbalanced three-phase distribution 
network. In the proposed method, the main goal of charging 
management is to minimize the total cost, which considers both 
network security constraints and electric vehicle constraints.  
The proposed method is tested on a sample distribution network 
and the numerical results prove the effectiveness of the method.  

Keywords—Charging strategy, Electric vehicle, Particle swarm 
optimization, Smart grids, Unbalanced distribution network. 

I. INTRODUCTION  

The number of electric vehicles (EVs) are growing, and 
their subsequent effects should be considered on the electric 
networks. It is important to adapt future development of the 
EVs charging with present network [1]. The development of 
EVs can address environmental issues like CO2 emissions [2]. 
EVs have profound impact on the future of energy system.  

The charging of EVs has effect on the electric network, 
which should be studied in different aspects. The method to 
simulate the charging of EVs is the key to analyze EVs’ 
flexibility on the operation of distribution system [3]. 
Development of EVs without considering the suitable 
charging management leads to numerous diverse effects on 
electric network including increase in harmonics, voltage 
unbalance and so on.  

In order to meet the problems related to large penetration 
of EVs in distribution networks, optimal charging strategies 
are addressed in previous studies. In [4], the EVs charging 
cost was minimized considering the day-ahead electricity 
price (DAEP) and battery degradation cost. In the study, 
different constraints including the EVs state of charge (SOC) 
restrictions, the EVs maximum power charger, full charging of 
the EVs’ batteries at the end of the charging period and the 
distribution feeder power are considered.  

Monte Carlo Simulations (MCS) have been applied to 
model the arrival and departure time distribution functions 
while the EV’s initial SOC uncertainties are estimated based 
on their daily mileage. In [5], the EV’s charging management 
was done in the discrete time approach. The objective function 
is minimizing the total cost related to buying electricity from 
external network, fossil fuel cost and the services provided for 
customers. The charging management is addressed by defining 
different objectives in previous studies.  

In [6] was outlined a battery charging strategy to reduce 
charging losses in a lithium-ion battery for EVs. The proposed 
charging strategy utilizes an adaptive current profile based on 
variations in the battery internal resistance as a function of the 
state of charge and the charge rate. In [7], the EV’s charging 
management is done in order to flatten the residential demand 
and minimize the charging cost. 

In [8] was presented a charging management strategy of 
the Electric Vehicles to support the integration of renewable 
energy sources and distributed generation. In this study, the 
users’ preferences (drivers) and the goal for realizing a 
scheduled aggregated power profile in order to minimize the 
effects of intermittency of the renewable energy sources have 
been studied.  

The authors in [9] have proposed a real-time charging 
strategy for EVs in an unbalanced distribution network. 
However, the proposed method optimizes for single time 
steps. The effects of charging EVs in both balanced and 
unbalanced networks are studied in different references. In 

[10], the branch power flow equations of balanced and 
unbalanced distribution system were derived. The 
linearization methods for the nonlinear terms of the branch 
power flow equations were as well proposed. The charging 
strategy of EVs was addressed using a model predictive 
control method in order to minimize the total cost [11]. 

In [12], the application of battery energy storage systems 
(BESSs) was studied in order to face the increased load 
demand by the penetration of EVs in distribution networks 
considering photovoltaic units. A Particle Swarm 
Optimization (PSO) algorithm was developed in order to 
perform optimal charging schedule for the EVs under the aim 
of optimizing the distribution network voltage profile. In [13], 
the authors have divided the driving area into four zones 
according to the functional areas of distribution network, and a 
regional time-of-use (RTOU) electricity price model was 
proposed considering its spatial and temporal characteristics.  
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The charging management problem of EVs including was 
modeled considering regional layer and node layer. 

Many of the methods discussed above assume networks in 
balance position. However, a large number of EVs are charged 
in unbalanced distribution systems. It is important to study the 
problems related to unbalanced networks. Some of the 
discussed works have been optimized from the network 
operators' view, which can limit the incentive of EV owners to 
participate in the program.  

In this work, an optimal charging method is presented in 
order to control charging rates of EVs in the unbalanced three-
phase distribution networks. A PSO- based method is used in 
order to minimize the total charging cost of vehicles 
considering different application constraints. The studied 
constraints involve transformer and line limitations, phase 
unbalance and voltage limits. The proposed charging method 
decreases the overall energy costs while satisfying both the 
operational constraints and realistic model. The contribution 
of the study can be listed as follows:  

• In this work the problems related to unbalanced 
networks are studied. an optimal charging method is 
presented in order to control charging rates of EVs in the 
unbalanced three-phase distribution networks; 
• The proposed charging method decreases the overall 
energy costs while satisfying operational the constraints. 

The rest of the manuscript is organized as follows:  
Section 2 provides the details of the proposed method. The 
proposed algorithm for charging management is presented in 
Section 3. Section 4 addresses the numerical and simulation 
results of the study considered. Finally, Section 5 provides the 
main findings of this work. 

II. METHODOLOGY 

This section provides the optimal charging of EVs in the 
unbalanced three-phase distribution networks with a 
comprehensive mathematical formulation. 

A. Assumptions 
The following assumptions are based on Australian 

Victoria EV trial as part of a pilot load control project [14]. It 
is assumed that EVs' charging rates are controlled centrally by 
the network operator through advanced metering infrastructure 
as a main part of smart grids technology.  

In addition, certain knowledge of the network 
characteristics is necessary, i.e., network topology, line 
impedances/admittances, nominal voltages and loads. 

B. Objective Function 
The objective function of the proposed strategy is to 

minimize total charging cost of vehicles for following  
24-hour horizon. The minimum charging cost can be 
considered as EV owners' main objective, which can be 
assumed as incentives for customers to permit network 
operator centrally controls their charging rates. The objective 
function is given as follows: 

(1) 

݈ܽݐܶ ݐݏܥ =   ܲ,∈ௌೡೌ௧∈ௌ் ,ݐ) ݅)∆ܶ௧ ܲ(ݐ)
+   ܲ,∈ௌೡ್௧∈ௌ் ,ݐ) ݅)∆ܶ௧ ܲ(ݐ)
+   ܲ,∈ௌೡ௧∈ௌ் ,ݐ) ݅)∆ܶ௧ ܲ(ݐ) 

where, ܲ,, ܲ,, and ܲ, are EVs' charging rate at phase ܽ, ܾ, and ܿ of node ݅th during time step ݐ, respectively. Cost of 
electricity at time step ݐ is denoted by ܲ . 

C. Constraints 
The objective function should be minimized subject to 

certain constraints. The following Equations guarantee that the 
voltage at phase ܽ, ܾ, and ܿ of node ݅th during time step ݐ are 
preserved within the rated voltage ranges indicated for the 
network: 

(2) ܸ ≤ ܸ(ݐ, ݅) ≤ ܸ௫ 

(3) ܸ ≤ ܸ(ݐ, ݅) ≤ ܸ௫  

(4) ܸ ≤ ܸ(ݐ, ݅) ≤ ܸ௫ 

The maximum and minimum allowed network voltage 
levels are ܸand ܸ௫, where assumed to be 0.9 pu and 1.1 
pu, [15]. The large variations in charging rates are undesirable 
for battery technologies [16]. Therefore, the following 
equations are used to limit EVs' rate of changes: 

(5) ܲ,ா(ݐ − 1, ݅) − ߂ ≤ ܲ,ா(ݐ, ݅) ≤ ܲ,ா(ݐ − 1, ݅) +  ߂

(6) ܲ,ா(ݐ − 1, ݅) − ߂ ≤ ܲ,ா(ݐ, ݅) ≤ ܲ,ா(ݐ − 1, ݅) +  ߂

(7) ܲ,ா(ݐ − 1, ݅) − ߂ ≤ ܲ,ா(ݐ, ݅) ≤ ܲ,ா(ݐ − 1, ݅) +  ߂

where, ܲ,ா, ܲ,ா , and ܲ,ா  are EVs' power demand at phase ܽ, ܾ, and ܿ of node ݅th during time step ݐ, respectively. Δ is a 
specified limit (kW) that denotes the allowable EVs' power 
demand change. EVs have the similar minimum and 
maximum possible power demand, i.e., ாܲ,	and ாܲ,௫ , 
which is considered as follows: 

(8) ாܲ, ≤ ܲ,ா(ݐ, ݅) ≤ ாܲ,௫  

(9) ாܲ, ≤ ܲ,ா(ݐ, ݅) ≤ ாܲ,௫ 

(10) ாܲ, ≤ ܲ,ா(ݐ, ݅) ≤ ாܲ,௫ 

The mathematical relations between charging rates and 
power demands of EVs are as follows: 

(11) ܲ,ா(ݐ, ݅) = ߟ ܲ,(ݐ, ݅) 
(12) ܲ,ா(ݐ, ݅) = ߟ ܲ,(ݐ, ݅) 
(13) ܲ,ா(ݐ, ݅) = ߟ ܲ,(ݐ, ݅) 

where, ߟ is charging efficiency of batteries because of energy 
loss due to AC/DC conversion. Each EV has a target of 
reaching to a specified energy level which expressed as 
follows: 
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(14) ܹ,ா =  ܲ,ா(ݐ, ݅)∆ܶଶସ
௧ୀଵ  

(15) ܹ,ா =  ܲ,ா(ݐ, ݅)∆ܶଶସ
௧ୀଵ  

(16) ܹ,ா =  ܲ,ா(ݐ, ݅)∆ܶଶସ
௧ୀଵ  

where, ܹ,ா , ܹ,ா , and ܹ,ா  are EVs' energy level at phase ܽ , ܾ , and ܿ  of node ݅ th during time step ݐ , respectively.  
The mathematical relation between energy level and state of 
charge of EVs are as follows: 

ܥܱܵ (17) = ,ܥܱܵ + ܹ,ாܥ  

ܥܱܵ (18) = ,ܥܱܵ + ܹ,ாܥ  

ܥܱܵ (19) = ,ܥܱܵ + ܹ,ாܥ  

where, ܱܵܥ ܥܱܵ , , and ܱܵܥ  are batteries SOC at phase ܽ, ܾ, and ܿ of node ݅th during time step ݐ, respectively. ܥ ܥ , , 
and ܥ  determine batteries capacity. The thermal loading of 
transformer and line should be considered to protect this 
equipment as follows: 

்ܮ (20) ≤  ೌೣ்ܮ

ெܮ (21) ≤ ெೌೣܮ  

where, ்ܮ  and ܮெ  are thermal loading, in kVA, for 
transformer and line, respectively. ்ܮೌೣ  and ܮெೌೣ  
determines the maximum loading for transformers and line, 
respectively. 

III. PROPOSED ALGORITHM FOR OPTIMAL CHARGING 

In this section the presented algorithm for optimal 
charging of EVs is discussed. The particle swarm optimization 
(PSO) technique is used in this manuscript to solve the 
optimization problem considering its constraints. An optimal 
result is attained through iterations of the evolution procedure 
from an initial value set. In this procedure, the particle’s 
parameters are updated based on the former best results for 
that particle and for the swarm so far. More in details, the ݆th 
particle firstly begins from a random position ()ݔ  with a 
velocity ݒ() . This position iteratively travels to another 
position ()ݔ	  at iteration ݇ while continuously updating its 
velocity ݒ()according to its own best experience ܾܲ݁ݐݏ , and 
the swarm’s best knowledge ݐݏܾ݁݃ . This can be 
mathematically explained as follows: 

(22) 
(ାଵ)ݒ = ()ݒݓ + ܿଵݎଵ൫ܾܲ݁ݐݏ − +()൯ݔ ܿଶݎଶ൫ܾ݃݁ݐݏ −  ()൯ݔ

ݓ (23) = ௫ݓ − ܹ௫ − ܹ݇௫ × ݇ 

(ାଵ)ݔ (24) = ()ݔ + ݆							(ାଵ)ݒ = 1,2, …… , ݊  

where, ݓ, ܿଵ, ܿଶ, ݎଵ, and ݎଶ are parameters of the PSO method. 
Using a trial and error approach the values of ܹ௫ , ܹ,ܿଵ 
andܿଶ  are set to be 0.9, 0.4, 2 and 2. ݇ increases from 1 to ݇௫ =   .ଶare randomly selected between 0 and 1ݎ ଵ andݎ .10

Figure 1 shows the PSO flowchart for the optimal charging 
strategy of EVs. The initial position of particles, i.e., EV’s 
SOC, charging strategy, including charging rates and charging 
times, are randomly assigned.  

Then, it should be verified that the EV's SOC and charging 
strategy are in contradiction with each other. If this condition 
is met, the charging strategies are modified considering EV's 
SOC. The charging strategies are imported to DIgSILENT 
software and load flow analysis results are exported to 
MATLAB software. If the load flow analysis is converged, the 
PSO objective function is evaluated. Otherwise, the PSO 
objective function is set to be infinite. If the PSO algorithm 
does not satisfy convergence criteria, the values of ݔ(), ݒ(), ܾܲ݁ݐݏ , and ܾ݃݁ݐݏ are updated for the next iteration. 

 
Figure 1.PSO flowchart for optimal charging strategy of EVs.  
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V. RESULTS AND DISCUSSION 

Three-phase unbalanced power flow analysis is needed to 
determine network voltage and thermal loading levels. In this 
wok, DIgSILENT software is used to perform unbalanced 
power flow analysis which is the most powerful power system 
analysis package. To this end, firstly the EVs' charging is 
determined by solving the optimization problem by MATLAB 
software.  

Then, these data, i.e., the EVs' charging data are imported 
to DIgSILENT software with DPL interface, and the load flow 
analysis is carried out. In this step, the output data of load flow 
are exported to MATLAB for more analysis. This exchange of 
data between MATLAB and DIgSILENT is continued until 
optimal results are obtained. The simulation data and results 
are explained as follows. 

A. Data 
The test network is based on the real distribution in the 

residential area of Dublin, Ireland. The single line diagram of 
this network and the technical data of the network and 
residential load demand are presented in [18]. Meanwhile, the 
capacity of main transformer is assumed to be 400 kVA while 
the maximum current of main lines is 424 A. Each EV is a 
single-phase load supplied by connected point of residential 
customers.  

It is assumed that charging rates of EVs are same and 4 
kW until 95% maximum capacity and 1.5 kW until full 
capacity. Moreover, the capacity of EV batteries is 20 kWh 
with 90% efficiency.  

As shown in Figure 2, half of residential customers are 
randomly used an EV led to 67 EVs with maximum demand 
of 268 kW. The initial state-of-charge of EVs is randomly 
generated and shown in Figure 2. Moreover, the share of EVs 
between phases of network and their total energy demand are 
illustrated in Table I. 

B. Simulations 
The proposed strategy (Section III) is employed for a  

24-hour time period. The convergence process of proposed 
algorithm is shown in Figure 3. It is shown that the optimal 
results are obtained in iteration 10 with less than 1 minute, 
decreasing the cost for about 0.9×10ସ.  

The charging strategies of EVs are illustrated in Figures 4 
to 7. As can be seen, the EVs' charging time and rates are 
different between each other. Therefore, using optimal 
distribution of EVs' charging demand over 24-hour time 
period leads to smoother loads and reduction in EVs' charging 
cost.  

The optimal number of EVs, versus charging start-time 
and number of EVs, versus charging durations are shown in 
Figures 8 and 9, respectively. As can be seen, start-time 
charging is mainly occurred in off-peak periods, so it helps to 
smooth load curve and decrease the expenditures.  

Meanwhile, the charging durations is between 2 hour and 5 
hours. It should be mentioned that average charging duration 
is about 5.34 hours. Moreover, network’s constraints include 
transmission lines’ and transformers’ loadings and node 
voltage limits are met.  

 

 
Figure 2. EVs' initial state-of-charge. 

 
Figure 3. Convergence process of proposed algorithm.  

 
Figure 4. Optimal charging strategy of EV number 1 to 17.  

 

197



 
Figure 5. Optimal charging strategy of EV number 18 to 34. 

 
Figure 6. Optimal charging strategy of EV number 35 to 51. 

 
 

 
Figure 7. Optimal charging strategy of EV number 52 to 76. 

 
Figure 8. Number of EVs vs. charging start time for optimal results.  

 

 
Figure 9. Number of EVs vs. charging durations for optimal results.  

TABEL I: PHASES OF NETWORK AND THEIR TOTAL ENERGY DEMAND 

 
Number 
of EVs 

Total battery 
Capacity  
(kWh) 

Total initial 
state-of-charge 

(kWh) 

Total energy 
demand 
(kWh) 

Phase a 19 380 139 241 

Phase b 18 360 146 234 

Phase c 30 600 236 344 

Total 67 1340 521 819 

 

It is worthwhile to say that the proposed optimal algorithm 
faces the constraints’ dissatisfaction like smart algorithms: – 
while a constraint, or more is not satisfied, a great penalty will 
be adding to the objective function which makes the result an 
unacceptable one, therefore, the algorithm will not follow the 
result in the next iteration. 

N
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VI. CONCLUSIONS 

The upcoming integration of a large number of EVs into 
distribution networks causes significant challenges for 
operators. The strategy presented in this paper reassures the 
operators that distribution networks can be operated 
considering a high penetration of EVs. The optimal 
application of EVs is considered in condition that the risk of 
voltage violation, or network overloading, is alleviated.  
The proposed strategy assumed the condition of near to real 
operation by testing the presented methodology in an 
unbalanced three phase load flow analysis. The results have 
proven that minimizing the total cost of EVs is feasible while 
network constraints are met. The start time of charging is 
mainly occurring in off-peak periods, so it helps to smooth the 
load curve and decrease the expenditures. Meanwhile, the 
charging duration is between 2 hours and 5 hours. It should be 
mentioned that the average charging duration is about 5.34 
hours. Also, the optimal results are obtained in iteration 10 
with less than 1 minute, which decreases the cost. Operating in 
the allowable range of voltage can be considered as the benefit 
for operators, while minimizing the total cost encourages the 
customers to use EVs. As a result, the proposed method 
considers the benefits for both network operators and EVs’ 
owners.   
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