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Abstract— Decentralization of power systems is creating a need 
for tools which can provide fast and accurate optimal power flow 
(OPF) solutions, without being dependent on the availability of all 
system information and/or uncertain variables. In this study, a 
hybrid probabilistic algorithm is proposed to accurately and 
efficiently predict ideal generation levels of individual generators 
to minimize the total system cost (as per AC-OPF), while having 
no information on the grid structure and with limited information 
on system variables. The proposed hybrid algorithm combines the 
use of correlation analysis, k-means clusters, and kernel density 
estimation (KDE), to predict ideal generation levels of each 
generator based only on historical datasets of local information 
(i.e. adjacent load centers). By simulating the AC-OPF problem on 
the IEEE 9-bus test system, a historical dataset of 1000 samples is 
synthetically generated and randomized local information is given 
as input for each agent. Quasi-deterministic Monte-Carlo 
simulations with 100000 samples were used for validation. In the 
most uncertain operating conditions, the proposed algorithm was 
capable of predicting the ideal generation level of the most 
expensive generator with a 1.65% error, while being three times 
faster than a Neural Network (NN), taking only 0.39 seconds to 
run on a standard laptop computer. 

Keywords—probabilistic analysis, optimal power flow, power 
system operation, k-means clustering, kernel density estimation. 

I. INTRODUCTION 

A. Motivation and Literature Review 

While power systems have profoundly changed in recent 
years both in terms of planning and operation, their primary 
function remains: feed all loads as economically as possible, in 
a continuous manner and with high quality service [1]. To 
ensure system safety and reliability, system performance and 
conditions are continuously reassessed and associated costs 
need to be reduced to the minimal. This often requires the 
continuous employment of complex optimization algorithms 
which take into account the available generation costs and 
limitations, structure of the power grid, and the associated 
physical constraints such as transmission line power and bus 
voltage angle constraints [2]. 

As such, in the optimal power flow (OPF) problem, the 
optimal generation level of each generator is determined such 
that the total load demand in the system is met. Taking into 
account the aforementioned constraints, the OPF objective 
function is to minimize the total cost of the network without 
jeopardizing its security.  

Different variations of the OPF problem can be performed 
based on additional objectives, the most common being, 
improvement of voltage angle, minimization of energy losses 
in the grid, through the setting of the ideal control variables, to 
meet the system operational constraints [3]–[5]. 

By accurately modeling all AC load flow equations of 
power systems, the AC OPF problem becomes a highly 
complex and highly non-linear one to solve. Therefore, there 
has been, and continues to be, an interest in developing 
computationally efficient methods to solve the problem and 
obtain an exact solution.  

Traditionally, deterministic methods based on linear 
programming were employed to solve the OPF problem, which 
became popular due to their reliability to obtain an exact 
solution. However, such approaches can only be applied if the 
objective functions are differentiable and continuous, and do 
not consider parameters of uncertainty [6], [7].  

With the proliferation of renewable energy sources (RES) 
and their inherently intermittent nature, accounting for 
uncertainties in OPF problems became inevitable. Quasi-
deterministic approaches such as Monte-Carlo (MC) 
simulations became popular in finding an “exact” solution in 
the presence of uncertainties.  

The main premise of such methods is to run a very large 
number of simulations to cover the full possible range of values 
of uncertain variables. Probability distribution functions 
(PDFs) could then be constructed by mapping the output 
variables to the input ones.  

As such, MC simulations became the standard quasi-
deterministic approach to solve AC OPF problems in the 
presence of uncertainties, despite being tremendously 
computationally expensive.  
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A variety of approximate methods were developed for faster 
analysis, provided that prior knowledge of the uncertain 
variables PDFs was available and the network load flow 
equations are accurately modeled [8], [9]. 

Meanwhile, power systems are becoming increasingly 
decentralized due to the combined effect of different factors 
ranging from electricity market reforms, to the proliferation of 
distributed energy resources (DER) and prosumer-based smart 
grid (SG) structures. This poses an additional challenge to 
deterministic OPF solvers, since they require complete 
information about the system constraints and structure.  In 
traditional, centralized, operation structures the system operator 
would have unlimited access to all information about the 
current state of the system and thereby be able to solve the 
deterministic OPF problem. However, in decentralized systems 
local agents must determine their optimal operation strategy 
based on locally available information, seldom having access to 
all system information [10], [11].  

One solution effort to solve this issue has been the 
employment of decomposition techniques to OPF, such as the 
alternative direction method of multipliers (ADMM) and others 
[12], [13]. However, such decomposition-based methods often 
suffer from convergence problems and are difficult to 
generalize for use with any generic power system configuration 
(i.e., they must be tuned/configured for each system to achieve 
reliable performance) [14]. 

Another solution approach is the use of probabilistic 
methods. While having been around for a long time, they have 
recently drawn attention in scientific literature as a suitable 
approach to obtain fast and reliable solutions for OPF problems, 
particularly in the presence of high levels of uncertainties. In 
addition, probabilistic methods only rely on the statistical 
relationships between input and output variables without the 
need of any deterministic model of the system. Therefore, lack 
of certain information about the system or different grid 
configurations are irrelevant for the operation of these methods, 
making them attractive to deal with the aforementioned 
challenges [8], [15]. 

B. Contributions 

In this study, a hybrid probabilistic algorithm is proposed to 
accurately and efficiently predict ideal generation levels of 
individual generators to minimize the total system cost (as per 
an AC-OPF study), whilst having no information on the grid 
structure and limited information on system variables. This 
makes the proposed approach ideal for decentralized operation 
of power systems, being capable of giving highly accurate 
estimates with a very fast processing speed, relying only on 
local historical data. 

C. Paper Organization 

This manuscript is organized as follows: Section I provided 
the motivation behind this work and a review or recent literature 
pertaining to different solution approaches for the OPF 
problem. Section II presents the mathematical formulation of 
the proposed hybrid probabilistic algorithm. Section III 
presents the 9-bus test system, used as a case study to test and 
validate the proposed approach, also showing how randomized 

historical datasets are synthetically generated to provide local 
historical data for each agent. In Section IV, the proposed 
algorithm is tested using the synthesized historical dataset and 
is validated by comparison with a Neural Network (NN) and 
MC simulations. Finally, the conclusions and prospects for 
future work are presented in Section V. 

II. PROPOSED ALGORITHM 

A flowchart of the proposed algorithm and the analysis 
performed in this study is provided in Fig. 1. The figure 
describes the pre-processing stage, which in this study is used 
to synthetically generate a random set of historical variables to 
be used as input for the proposed hybrid probabilistic algorithm. 
The algorithm consists of three main components: correlation 
analysis, k-means clustering, and kernel density estimation 
(KDE). All implementation is performed using MATLAB 
R2019b, on a standard laptop computer with the following 
specifications: Intel Core i7-8550U CPU @ 1.80 GHz, 16.0 GB 
RAM, Windows 10 64-bit operating system. The mathematical 
formulation of each component of the proposed algorithm is 
subsequently presented in this section. 

A. Correlation Analysis 

Given a historical set of load demand values PD, and the 
corresponding ideal generation values PG, the linear 
dependence between them (i.e., correlation coefficient) can be 
calculated by means of the Pearson coefficient [16], which is 
defined in   (1): 

,ܩܲ)ߩ  (ܦܲ = 1௦ܰ − 1ቆܲܩప − ீߪതതതതതതതതതതതതത	ீߤ ቇ ൬ܲܦ − ߪߤ ൰ேೞ
ୀଵ  (1) 

where, ܩܲ)ߩ, (ܦܲ  is the correlation coefficient between PG 
and PD. Ns is the number of samples in the historical dataset. ߤீ, ,ߤ ,ீߪ  and ߪ  are the mean and standard deviation 
values of PG and PD, respectively.  

 
Fig. 1. Flowchart of the proposed hybrid probabilistic algorithm (right), in 
addition to the process used to randomly generate a synthetic historical dataset 
(left). Dotted elements are optional (i.e., not critical for the functionality of the 
algorithm), while solid elements are mandatory. 
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As indicated in the flowchart in Fig.1, this is optional and 
not critical to run the algorithm. The objective of correlation 
analysis is to determine the most relevant inputs in case more 
than one is provided. For instance, if historical data of multiple 
load centers is provided, those upon which the generator’s 
optimal value is least relevant (i.e., with the lowest values of ρ) 
can be discarded from the analysis.  

In the cases for which the proposed algorithm is intended 
for (decentralized operation with limited access to information), 
this step is seldom influential, as abundance of redundant 
information is rarely a problem. However, it is important to 
maintain this component in the algorithm as it has an 
insignificant computational burden while always ensuring rapid 
processing by preventing any redundant data from reaching the 
subsequent steps, which make up the majority of the processing 
time. This ensures that statistically irrelevant data is discarded 
from the beginning enhancing the computational speed of the 
algorithm as much as possible. 

B. K-Means Clustering 

The next step is to employ k-means clustering to group 
correlated historical data pairs into clusters, or partitions. 
Consider Ns samples of historical values of PD and the 
corresponding PD. Those can be represented as a dataset in the 
form of a vector X, with each element xi containing a pair of 
values {PDi, PGi} as shown in   (2) and (3). 

ܩܲ  =  (2) (ܦܲ)݂

 X = ൦ ேೄ൪ݔ⋮ଶݔଵݔ = 	 ێێۏ
ۍ ,ଵܦܲ} ,ଶܦܲ}{ଵܩܲ ,ேೄܦܲ}⋮{ଶܩܲ ۑۑے{ேೄܩܲ

ې
 (3) 

In k-means clustering, the objective is to partition the 
dataset into a number of Nc clusters, each with a centroid c, 
such that the sum of all distances between the data points and 
the centroids (߶) is minimized: 

 argmin߶ ≔	min∈ ,ݔ)݀ ܿ)௫∈  (4) 

The distance between a point x and a cluster c is denoted by 
d(x,c).  C is the vector of cluster centroids, each having a 
number of dimensions equal to the number of variables in each 
historical data point. In this case, each data point x has two 
variables, and so each centroid has two dimensions: 

 C = ൦ ܿଵܿଶ⋮ܿே൪ = ێێۏ
ۍ {ܿଵ(1), ܿଵ(2)}{ܿଵ(1), ܿଶ(2)}⋮൛ܿே(1), ܿே(2)ൟۑۑے

ې
 (5) 

As such, d(x,c) can be calculated with different metrics. In 
this study, the square Euclidean distance is used: 

,ݔ)݀  ܿ) = ට൫(1)ݔ − ܿ(1)൯ଶ − ൫(2)ݔ − ܿ(2)൯ଶ	  (6) 

To determine the location of the centroids satisfying (4), the 
k-means++ algorithm is employed due to its high 
computationally efficiency [17]: 

Step 1: Choose the first centroid c1 as a random (with uniform 
probability distribution) selection from the dataset. 

 ܿଵ ோ←X (7) 
Step 2: Calculate the distances between the first centroid and 
all data points. 
Step 3: Select the next centroid ci from the dataset: 

 ܿ = ᇱݔ 		 ோ← 		X (8) 
In this case the random selection probability is as follows: 

 ோ݂ = ݀ଶ(ݔᇱ, ܿିଵ)∑ ݀ଶ(ݔ, ܿିଵ)௫∈ଡ଼  (9) 

Step 4: Repeat step 3 iteratively until the centroids of all Nc 
clusters are determined. 
Step 5: Calculate the distances from each data point to each 
centroid, assigning each data point to the cluster with the 
nearest centroid. 

C. Kernel Density Estimation 

To estimate the PDF of a given dataset, two classes of 
methods exist: parametric and nonparametric. Parametric 
methods are employed when the data can be fitted to a typical 
(e.g. Normal, Gaussian, etc.) parametric distribution, i.e., when 
some knowledge of the PDF is known beforehand.   Non-
parametric methods are employed when no prior knowledge is 
available. The simplest and most well-known non-parametric 
method is histogram analysis, in which data points are grouped 
in bins and the frequency distribution is obtained. While being 
simple, it is unsuitable for large sets of data due to the large 
computational burden [18].  

KDE is a reliable and computationally efficient non-
parametric method to estimate PDFs of random variable 
datasets. The mathematical formulation of KDE is provided 
subsequently. 

1) 1D Univariate KDE 

Consider that for a fixed value of PDj, a corresponding 
subset of historical PGPDj values are available. The size of this 
subset can be denoted as Nsub. The probability of each PGi, መ݂(ܲܩ), can then be estimated using KDE as follows, to obtain 
the PDF for the entire range of PG values in this subset [19]: 

መ݂ ቀܲܩೕ,ቁ = 1ℎ	 ௦ܰ௨  ೕ,ܩቆܲܭ − ೕ,ℎܩܲ ቇேೞೠ್
ୀଵ  

∀ ݅ = 1, 2,… ௦ܰ௨ 

(10)

K and h correspond to the kernel smoothing function (KSF) 
and its bandwidth, respectively.  In this study, a normal 
distribution is used as the KSF. Silverman’s rule is used to 
determine the optimal bandwidth for each data subset [20]: 

 ℎ = ߪ ⋅ ൬ 4( ௗܰ + 2) ⋅ ௦ܰ൰ ଵ(ேାସ) (11) 

where ߪ is the standard deviation and of the subset, and Nd 
is the number of dimensions. 
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2) 2D Bivariate KDE 

In the current study the objective is to predict values of 
generation based on demand, meaning that the historical dataset 
is two-dimensional as expressed in   (2)-(3). Thereby, the 
univariate definition of KDE must be extended to the 2D 
bivariate one. 

In this case, take the vector of historical variables in Eq. (3) 
such that the number of dimensions is 2. For each variable in 
the dataset there exists Ns historical measurements   (10) can 
then be extended to the two-dimensional case as follows [20]: 

 መ݂(X) = 1ℎଵℎଶ ௦ܰ ෑܭቆݔ(݆) − (݆)ℎݔ ቇଶ
ୀଵ

ேೞೠ್
ୀଵ 				 (12) 

The bandwidth used for each dimension (h1, h2) is 
calculated by adapting Silverman’s rule in   (11) for a bivariate 
case as follows: 

 ℎ = ൬ߪ௫௦ܰ ൰ଵ 			∀			݆ = 1,2 (13) 

3) Superposition of PDFs 

In the proposed algorithm, bivariate KDE is applied for each 
cluster of historical data. The superposition of the resulting 
PDFs of each cluster is then performed. 

 መ݂(X) ≈ 1ܰ ⋅ ቌ መ݂(Xୡ)ே
ୀଵ 	ቍ (14) 

where Xୡ denotes the subset of the historical data belonging to 
each cluster c, obtained as a result of the k-means clustering in 
the previous step. At this stage, a 2D PDF can be obtained 
linking historical load values to ideal generator output levels. 

III. CASE STUDY 

The proposed algorithm is tested by considering the 
standard IEEE 9-bus test system [21], shown in Fig. 2. The 
system is comprised of three conventional generators. The 
quadratic cost function coefficients, in addition to the generator 
limits are listed in Table I. The network contains three load 
centers, two adjacent to each of the generators. The 
initial/default loading conditions are presented in Table II. 

A. Synthetic Generation of Historical Data 

In order to test the proposed method, a historical dataset is 
synthetically generated by running an AC-OPF analysis for 
1000 (i=1,2,…,NH=1000) randomly generated operating 
scenarios on the three load buses (PD5, PD7, and PD9). 

 ℍ್ = ൛ܲܦଵ,, ,ଶ,ܦܲ ܾ		∀		ேಹ,ൟܦܲ… ∈ {5,7,9}   (15) 

 To do this, the first step is to determine the maximum 
loadability of the network according to the method described in 
[22]. Using this method, the total load of the system is increased 
while maintaining the power angle (or power factor) on each 
load bus. By running this test it was found that the maximum 
loadability of this network was around 21% of the initial 
loading (Table II).  

For each generated scenario, a loadability coefficient ߙ, is 
chosen at random (uniform distribution) for each load bus, such 
that the loadability of each bus is between 0.9 and 1.2 
(maximum limit) of the initial/default value. This coefficient is 
then used to determine the active and reactive powers at each 
load bus for each randomly generated scenario, as shown in 
(16)-(20). Finally, each randomly generated scenario is solved 
as an AC-OPF problem using the MATPOWER 7.0 solver [23].  

,ߙ  ோ← ℝ | 0.9 ≤ ,ߙ ≤ 1.2	 (16) 

,ܦܲ  = ௧ܦܲ ∙  , (17)ߙ

 หܵܦ௧ห = ඥ(ܲܦ௧)ଶ +  ଶ (18)(௧ܦܳ)

  ݂ = cos(ߠ) = |௧|ܵ௧ܦܲ  (19) 

,ܦܳ  = 	,ܦܲ ∙ tan( ݂) (20) 

As such, the required historical dataset indicated earlier in 
Eq. (2)-(3) is synthetically generated in order to test the 
proposed method on this test system. The results of the 
preliminary step (correlation analysis) are shown Table III 
between the generation levels of each generator and different 
combinations of load centers.  

 
Fig. 2. Single line diagram of the IEEE 9-bus test system [21]. 

TABLE I.  GENERATOR SPECIFICATIONS IN THE 9-BUS TEST SYSTEM: 
QUADRATIC COST FUNCTION COEFFICIENTS AND GENERATION LIMITS. 

Generator a b c PGmax PGmin 
G1 150 5.0 0.1100 250 10 
G2 600 1.2 0.0850 300 0 
G3 335 1.0 0.1225 270 0 

TABLE II.  INITIAL (DEFAULT) ACTIVE AND REACTIVE POWER LOADING 

CONDITIONS AT THE THREE LOAD CENTERS OF THE 9-BUS TEST SYSTEM. 

Bus PDinitial QDinitial |SDinitial| θ pf 
5 90 30 94.868 0.322 0.949 
7 100 35 105.948 0.337 0.944 
9 125 50 134.629 0.381 0.928 

TABLE III.  CALCULATED CORRELATION INDICES BETWEEN EACH 

AGENT/GENERATOR AND EACH LOAD CENTER OR COMBINATION THEREOF. 

PD5 PD7 PD9 PD57 PD59 PD79 PD579 
G1 0.5113 0.5071 0.7004 0.7135 0.8653 0.8649 0.9988
G2 0.4962 0.5492 0.6793 0.7344 0.8394 0.8747 1.0000
G3 0.5041 0.5492 0.6736 0.7397 0.8394 0.8702 1.0000
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B. Locally Available Data for Each Agent 

From Table III, it can be seen that each agent (generator) 
can accurately determine the ideal generation level if they are 
given information about the total load of the system (due to 
exact linear dependency as shown in the last column). It was 
previously mentioned that one of the main goals of the proposed 
method is the capability of accurately estimating generation 
values by relying only on locally available information for each 
agent in the network. To test this aspect, the following 
conditions are assumed: 
• Each generator only has access to the total (aggregated) 

load of the two adjacent load centers (G1 to PD59 . G2 to 
PD79, and G3 to PD57) as shown in Fig. 3. 

• The agents have no access to any other information about 
the network, including values of individual loads, levels of 
other generators, and the network configuration. 

In other words, each agent/generator employs the proposed 
method to predict their ideal generation levels based solely on 
the information provided to them: the aggregated load of the 
most adjacent load centers. This becomes the input to the 
algorithm for each agent, as described in (2)-(3). 

IV. RESULTS 

The results of the proposed method for each of the three 
agents/generators is shown in Fig. 4 and Fig 5, for the K-means 
clustering and the final KDE stages, respectively. The proposed 
method is capable of effectively producing a probabilistic 
estimate for each generator, satisfying the condition of 
minimizing overall system costs, given only local historical 
data.  

In Fig. 5, the most likely (highest probability) values seem 
to exhibit steep jumps or fluctuations. This is expected due to 
the high non-linearity of the problem with the unknown 
variables creating a multi-model probability distribution for the 
generation at each value of adjacent load demand. 

To investigate this in more detail, the results for the most 
expensive generator (i.e., G2) are highlighted in Fig. 6. In 
figure, the most probable scenario is shown, along with the 
confidence intervals shown corresponding to the 20% most 
probable scenarios. To evaluate the performance of the 
algorithm and validate the obtained results, an operating point 
which exhibits a high value of uncertainty is chosen 
(PD79=218.1 MW). The predicted value based on the proposed 
algorithm is compared with a Neural Network (1 hidden layer 
with 10 neurons), and quasi deterministic MC1000, 10000, and 
1000000. The results listed in Table IV show that the proposed 
method was capable of predicting the most likely scenario with 
an error of 1.65%. The Neural Network managed to achieve an 
error of 0.86%, however was three times slower than the 
proposed method. The results demonstrate the exceptional 
computational efficiency of the proposed model. 

TABLE IV.  PERFORMANCE COMPARISON BETWEEN THE PROPOSED 

METHOD, NEURAL NETWORKS, AND MONTE-CARLOS SIMULATIONS. 

 
Predicted 

Generation 
(MW) 

Prediction 
Error  

(vs. MC100000)

Running 
Time  

(seconds) 
Proposed Method 131.62 1.65 % 0.39 
Neural Network 132.68 0.86 % 1.29 
Monte-Carlo 1000 133.73 0.07 % 32.07 
Monte-Carlo 10000 133.81 0.01 % 288.62 
Monte-Carlo 100000 133.83 -- 2822.72 

 
 
 
 
 
 
 
 

 
Fig. 3. Locally accessible data: (a) G1 has access to PD59 (aggregated load from buses 5 and 9), (b) G2 has access to PD79, and (c) G3 has access to PD79 

 
Fig. 4. Results of the k-means clustering for each input dataset for each agent/generator: (a) G1, (b) G2, and (c) G3. Colors denote data points belonging to the 
same cluster, and crosses indicate cluster centroids.  

173



 
Fig. 5. Results of the 2D Bivariate KDE stage after superposing PDFs of individual clusters. Red and blue indicate higher probability and lower probabilities, 
respectively. The solid black line shows the estimated value (highest probability) for ideal generation corresponding to each load value. 

 
Fig. 6. Results for the most expensive generator (G2), showing most likely 
generation value and confidence intervals (top 20% probable scenarios). 

V. CONCLUSIONS 

In this study, a hybrid probabilistic algorithm was proposed to 
accurately and efficiently predict ideal generation levels of 
individual generators which minimize the total system cost (as in 
an AC-OPF study), while having no information on the grid 
structure and with limited information on system variables. The 
proposed algorithm combines correlation analysis, k-means 
clustering, and KDE to predict ideal generation levels of each 
generator based only on local historical information (i.e. 
aggregated adjacent load centers). By simulating the AC-OPF 
problem on the IEEE 9-bus test system, a historical dataset of 1000 
samples was synthetically generated and local information was 
provided as input for each agent. Quasi-deterministic Monte-Carlo 
simulations with 100000 samples were used for validation. In the 
most uncertain operating conditions, the proposed algorithm was 
capable of predicting the ideal generation level of the most 
expensive generator with a 1.65% error, while being three times 
faster than a Neural Network (NN), taking only 0.39 seconds to run 
on a standard laptop computer. This method exhibits great potential 
for use in decentralized operation of power systems, especially 
when lack of system information is an issue. For future work, a 
study incorporating uncertainties of renewable generation in 
addition to the scalability of the method for larger networks is 
recommended. 
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