
Computer Labs: OO-programming with C
Or C vs. C++

2o MIEIC

Pedro F. Souto (pfs@fe.up.pt)

November 21, 2010

Object Oriented Programming

I Object-oriented programming is a programming paradigm
that facilitates the development of programs in general and
of some classes of programs in particular:

I Graphical user interfaces (GUI)
I Computer graphics programs (e.g. games)
I Computer simulations

I C, unlike C++, is not object-oriented
I However, it is possible to develop code in object-oriented

style with C
I Actually, to be more precise we should say:

I It is possible to develop abstract data types in C

OO and Classes (A Short and Simplistic View)

I A language is OO if it supports the concept of Class
I A class is a (data-)type that includes both

State i.e. data members/fields
Behavior i.e. functions/methods that operate on the class’s

state
I An object is an instance of a class
I A key concept in OO is data encapsulation or data

hiding, i.e.:
I Access to the state of an object is possible only by invoking

its methods

Most of the advantages of object orientation stem from this
property.

Problem How can we implement classes/objects in C in such a
way that ensures data-encapsulation?

Specifying a Class in C

Idea Use:
structs to store the state of an object
functions as the methods of a class

I The first argument of each function should be a
pointer to the state of the object on which the method
will operate

I Define each class in its own C source (.c) file
I This further contributes to the modularity and to the

pluggability of the code
I Helps ensuring data hiding (see below)

Example: A Queue Class – queue.h

typedef struct {
int *buf; // pointer to array that stores queue elements
int in,out; // indices of the array pointed by buf

// to insert/remove elements
int size; // size of the array
int count; // number of elements in queue

} queue_t;

queue_t *new_queue(int ini_size); // "constructor":
// ini_size, initial queue size

void delete_queue(queue_t *q); // queue destructor
int put_queue(queue_t *q, int n); // enqueue ’n’ in queue, returns

// 0 in case of success
// -1 otherwise (queue full,
// or no space)

int get_queue(queue_t *q, int *p); // dequeue first element from queue to *p, returns
// 0 in case of success
// -1 otherwise (queue empty)

I Note that for all “methods” but the constructor, the first
argument specifies the object that is the target, i.e. the
object on which the method will operate.

Parenthesis: typedef

I Defines a new data type name
I E.g.

typedef unsigned char uchar;

makes uchar a synonym of unsigned char

It does not define a new type
I POSIX recommends(?reserves?) that data type names

have the _t suffix to distinguish them from other names
I There are two main reasons to use typedef:

Portability E.g. the size of integer types may differ among
architectures/compilers

Readability The name queue_t is clearer than using
some complicated struct, although we might use
struct queue instead

besides aesthetics.

Example: Constructor and Destructor
C has no new nor delete instructions
Use malloc() and free() instead

I These are functions of the C standard library
I In addition to malloc() there is also realloc() (and
calloc())
#include <stdlib.h>

...
int *buf, *ptr;
...
// allocate an array for 100 ints
buf = (int *) malloc(100*sizeof(int));
...
// reallocate more space for 100 ints
// -- preserve the value of the first 100 ints
ptr = (int *) realloc(buf, 100*sizeof(int));
if(ptr == NULL) { // run out of memory

...
} else

buf = ptr;
...
free(buf);

Parenthesis: The sizeof Operator

I sizeof allows to compute the size in bytes of:
I a variable, an array or structure;
I a type i.e. a basic type, or a derived type such as a

structure or pointer

typedef struct {int color, char *msg} Msg;
int size = sizeof(Msg); // size of struct in bytes
Msg msgs[20];
int size_msgs = sizeof(msgs); // size of array in bytes
// number of elements in array
// int num_el = msgs.size(); // in C++
int num_el = sizeof(msgs)/sizeof(Msg) ;
// dynamically allocate an arry with N elements
// Msg *mptr = new Msg[N]; // in C++
Msg *mptr = (Msg *) malloc(N*sizeof(Msg));
// free memory
// delete[] mptr; // in C++
free(mptr)

Example: Queue Implementation – queue.c

queue_t *new_queue(int in_size) {
// allocate queue object
queue_t *q = malloc(sizeof(*q));
if(q == NULL)

return NULL;
// allocate space to store queue elements
q->size = in_size ? in_size : 1;
q->buf = malloc(q->size * sizeof(int));
if(q->buf == NULL) {

free(q);
return NULL;

}
// initialize state of queue
q->in = q->out = q->count = 0;

return q;
}
void delete_queue(queue_t *q) {

free(q->buf);
free(q);

}

Example Queue Implementation – queue.c

int put_queue(queue_t *q, int n) {
if(q->count == q->size)

if(resize_queue(q)) // private function
return -1;

q->buf[q->in++] = n;
q->count++;
adjust_queue(q); // private function
return 0;

}
int get_queue(queue_t *q, int *n) {

if(q->count != 0) {

*n = q->buf[q->out++];
q->count--;
adjust_queue(q);
return 0;

}
return -1;

}

Question: How to ensure that resize_queue() and
adjust_queue() are private?

I In C, by default, all functions are global, i.e. public

Answer: Use the static Keyword
I The static keyword limits the scope of an “object”, i.e.

function
variable
to the C source (.c) file where that “object” is defined

I The static keyword provides a means of hiding names of
global objects from other modules, i.e. C source files

// private: can be invoked only in queue.c
static void adjust_queue(queue_t *q) {

q->in %= q->size;
q->out %= q->size;

}
static int resize_queue(queue_t *q) {

int *p = (int *)realloc(q->buf, 2*(q->size)*sizeof(int));
int i;
if(p == NULL)

return -1;
q->buf = p;
for(i = 0; i < q->in; i++)

q->buf[q->size + i] = q->buf[i];
q->in += q->size;
q->size *= 2;
return 0;

}

Parenthesis: More on static
I When applied to local variables, i.e. variables defined

inside a function, static means that that variable and its
value persist between invocations of that function

Static Global Variables vs. Global Variables
foo.c:

int totallyGlobal;
static int locallyGlobal;
void foo() {

totallyGlobal = 1;
locallyGlobal = 2;

}

bar.c:

extern int totallyGlobal;

void bar() {
totallyGlobal = 1;

}

Private Functions

popo.c:

// invokable only in popo.c
static void popo() {

...
}

Persistent Local Variables

xpto.c:

// counts number of xpto() invocations
void xpto() {

static int count = 0;
count++;
...

}

Ensuring Encapsulation
I Encapsulation hides the details of implementation of an

object from its users
I The use of private methods by means of static is not

enough:
I In our implementation, a user can access any field of the

object using a pointer to the corresponding struct:
q->size += 10;

Question: How can we prevent it?
Answer: Hiding the implementation of the queue_t

queue.h

struct queue;
typedef struct queue queue_t;

The “class”’ user needs
pointers to queue_t, thus
there is no problem if the type
is incomplete

queue.c
#include "queue.h"
struct queue {

char *buf;
int in, out;
int size, count;

};

Only the “class” implementation
needs to know the data members
of struct queue

Example: Use of Queue
#include "queue.h"

int main(int argc, char *argv[]) {
queue_t *q;
int size = 20; // queue default size
int n;

if(argc == 2)
size = atoi(argv[1]); // should use strtoul

if((q = new_queue(size)) == NULL)
return -1;

if(put_queue(q, 77) != 0)
printf("Queue full\n");

if(get_queue(q, &n) != 0)
printf("Queue empty\n");

else
printf("Dequeued %d\n", n);

delete_queue(q);
return 0;

}

Generic “Classes”

Problem: queue_t (or struct queue) is able to store values
of type int only

I To store values of other types we could write a different
class

Question How about to implement something like C++
templates?

Answer Yes, we can
I All we need is to use generic pointers, i.e. void *
I But ... we cannot take advantage of pointer arithmetic

Parenthesis: Pointer Arithmetic
I A C pointer is a data type whose values are memory

addresses of variables of a given type
I In C, the name of an array is the address of the first

element of that array:
int a[5];
p = a; /* set p to point to the first element */
p = & (a[0]); /* same as above */

I Conversely, we can use the “array notation” to refer to
element i of array a;

for(i = 0; i < 5; i++) {
p[i] = 0;

}
I C supports pointer arithmetic – meaningful only when used

with arrays:
for(i = 0; i < 5; i++, p++) {

*p = 0;
}

I In the implementation of queue_t, we used the array
notation to access the elements in the queue. E.g. in
put_queue():

q->buf[q->in++] = c;

Example: Generic Queue

I Because we are using generic pointers we cannot rely on
the C compiler for pointer arithmetic:

I The compiler does not know the size of each element in the
queue

I The size of each element must be kept as part of the state
of the generic queue

#include "gqueue.h"
struct gqueue {

void *buf; // void * instead of int *
int in, out;
int size, count;
int el_size; // for pointer arithmetic

};

Question: What is the meaning of in and out (size and
count)?

Example: Generic Queue
Alternative I: Same meaning as in queue_t

in index of element in array pointed to by buf
out index of element in array pointed to by buf

This is the alternative closer to what the C compiler does when
a pointer to a type is used

Alternative II
in offset of element in array pointed to by buf
out offset of element in array pointed to by buf

In this casem it might be better to name the members in_off
and out_off

Alternative III
in pointer to position in array pointed to by buf
out pointer to position in array pointed to by buf

It would have been better to define in and out as void *

Example: Generic Queue – gqueue.c
gqueue_t * new_gqueue(int n_el, int el_size) {

gqueue_t * q = malloc(sizeof(gqueue_t));
if(q == NULL)

return q;
// The user must provide the size of each queue element
q->size = n_el ? n_el : 1;
q->buf = malloc((q->size * el_size);
if(q->buf == NULL) {

free(q);
return NULL;

}
q->in = q->out = q->count = 0;
q->el_size = el_size;
return q;

}
void delete_gqueue(gqueue_t *q) {

free(q->buf);
free(q);

}
int is_empty_gqueue(gqueue_t *q) {

return q->count == 0;
}

Example: Generic Queue – gqueue.c
int is_full_gqueue(gqueue_t *q) {

return q->count == q->size;
}
int put_gqueue(gqueue_t *q, void *el) {

if(is_full_queue(q))
return -1;

// memcpy(dst, src, n_bytes): memory copy
// must do pointer arithmetic explicitly
memcpy(q->buf + q->in*q->el_size, el, q->el_size);
q->in = (q->in + 1) % q->size;
q->count++;
return 0;

}
int get_gqueue(gqueue_t *q, void *el) {

if(is_empty_gqueue(q))
return -1;

memcpy(el, q->buf + q->out*q->el_size, q->el_size);
q->out = (q->out + 1) % q->size;
q->count--;
return 0;

}

Example: Use of Generic Queue

typedef struct {int time, freq;} note_t;

gqueue_t *nq = new_gqueue(10, sizeof(note_t));

note_t in, on;
for(i = 0; i<30; i++) {

in.time = 1; in.freq = (i+2)*10;
if(put_gqueue(nq, &in) != 0)

printf("Full queue\n");
if(get_gqueue(nq, &out) == 0) {

printf("%d-%d \n", on.time, on.freq;
} else {

// This should never occur
printf("Empty queue\n");

}
}

Conclusion

I It is possible to use C, thinking in C++
I However:

I C is not C++
I You need more discipline to structure your program and

write your code
I We expect you to apply these concepts in your project

I If you need some well known data structure (queue, stack,
...) take a look to the interfaces of the classes supported by
OO languages, such as C++, Java or C#

Thanks to:

I.e. shamelessly translated material by:

I João Cardoso (jcard@fe.up.pt)

