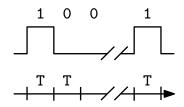

# Computer Labs: The PC's Serial Port 2° MIEIC

Pedro F. Souto (pfs@fe.up.pt)

November 3, 2011

#### Parallel Communication (1/2)


- ➤ This is the type of communication used in the memory bus for communication between the CPU and memory
  - ► The memory bus has several lines, usually as many as the CPU word size (32-bit for IA-32 architecture)
  - ► Each bit of a memory word is placed on the corresponding line, at the same time



## Parallel Communication (2/2)

- Parallel Communication **Signals** are sent simultaneously in **parallel** over several **channels** 
  - Signal A physical quantity that represents a sequence of bits (more generally information)
  - Channel A transmission medium such as a pair of wires, a frequency band of the radio spectrum, a light wavelength in an optical fiber
    - The set of channels used for parallel comunication is often named as a bus. Some examples include:
      - Many buses used to interface with the controllers of I/0 devices, starting with ISA, ATA, SCSI, PCI and AGP

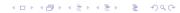
#### Serial Communication



Serial Communication **Signals** are sent sequentially over one **channel**, also called **serial bus**. Some examples include:

- ► The serial port of the PC (RS-232)
- Many network technologies, such as Ethernet, WiFi, GSM
- Many buses used to interface with (external) I/O devices, such as USB, FireWire (IEEE 1394), (e)SATA

# Synchronous vs. Asynchronous Serial Communication

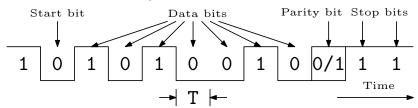

Problem How does the receiver synchronize? I.e., how does a receiver know when a bit ends and a new one starts?

Solutions There are essentially two approaches, that differ on the synchronization between the clocks of the sender and the receiver:

Synchronous Communication In which the clocks are synchronized:

- Either by embedding the clock into the bit stream, e.g. using Manchester encoding, where a 1 is encoded as a low to high transition and a 0 as a high to low transition
- Or by using just one clock which is sent in a different "channel" (e.g. in the communication between the keyboard and the KBC)

Asynchronous Comunication In which the clocks run independently




## **Asynchronous Serial Communication**

- So that the receiver synchronizes:
  - ► The data is grouped in **characters** of typically 7 or 8 bits
  - Each character is:
    - preceded by a start bit, usually a 0
    - followed by at least one stop bit, usually a 1
- Other communication parameters include:

Parity bit This is used for simple error detection Bit-rate The maximum number of bits that are transmitted per time unit

Not to confuse with **baud-rate**, the number of **symbols** transmitted per second.



#### Serial Communication on the PC

- Typically a PC has at least one serial port
  - This satisfies the RS-232 standard
  - Uses a D-9 connector, first introduced by IBM
- Each serial port is controlled by a Universal Asynchronous Receiver/ Transmitter (UART), an asynchronous communication controller
- Each UART takes:
  - Eight (8) consecutive port-numbers in the PC's I/O address
  - One IRQ line

| Port | Base Address   | IRQ | Vector |
|------|----------------|-----|--------|
| COM1 | 0x3F8 (-0x3FF) | 4   | 0x0C   |
| COM2 | 0x2F8 (-0x2FF) | 3   | 0x0B   |

## UART Accessible (8-bit) Registers

| Address | Read/Write | Mnem. | Description                   |
|---------|------------|-------|-------------------------------|
| 0       | R          | DATA  | Received character            |
|         | W          | DATA  | Character to transmit         |
| 1       | R/W        | IER   | Interrupt Enable Register     |
| 2       | R          | IIR   | Interrupt Identification Reg. |
|         | W          | FCR   | FIFO Control Register         |
| 3       | R/W        | LCR   | Line Control Register         |
| 4       | R/W        | MCR   | Modem Control Register        |
| 5       | R          | LSR   | Line Status Register          |
| 6       | R          | MSR   | Modem Status Register         |
| 7       | R/W        | SR    | Scratchpad Register           |

IMPORTANT Addresses 0 and 1 are overloaded, accessing different registers if bit DLAB of the LCR register is set to 1:

| Address | Read/Write | Mnem. | Description       |
|---------|------------|-------|-------------------|
| 0       | R/W        | DLL   | Divisor Latch LSB |
| 1       | R/W        | DLM   | Divisor Latch MSB |

## Purpose of the Control/Status Registers

- Line Control Register (LCR) Allows the setting of the main asynchronous communication parameters: number of bits per character, number of stop bits and parity
- DLLB and DLHB Allows the setting of the the bit rate (by means of a frequency divider), via the Divisor Latches of the programmable bit-rate generator.
- Line Status Register (LSR) Provides status information concerning the data transfer: whether a character was transmitted or received, and in the latter case whether an error was detected
- Interrupt Enable Register (IER) Allows the selection of the events that may generate interrupts
- Interrupt Identification Register (IIR) Provides information regarding the event that caused an interrupt
- FIFO Control Register (FCR) Allows the control of FIFO buffering, both for reception and for transmission
- IMPORTANT These registers may also include state/control bits that do not match exactly the purpose described above.

## Line Control Register (LCR)

| Bit      |   |   |   | Meaning                                      |
|----------|---|---|---|----------------------------------------------|
| 1,0      |   |   |   | Number of bits per char                      |
|          |   | 0 | 0 | 5 bits per char                              |
|          |   | 0 | 1 | 6 bits per char                              |
|          |   | 1 | 0 | 7 bits per char                              |
|          |   | 1 | 1 | 8 bits per char                              |
| 2        |   |   | 0 | 1 stop bit                                   |
|          |   |   | 1 | 2 stop bits (1 and 1/2 when 5 bits char)     |
| 5,4,3    |   |   |   | Parity control                               |
|          | Х | Х | 0 | No parity                                    |
|          | 0 | 0 | 1 | Odd parity                                   |
|          | 0 | 1 | 1 | Even parity                                  |
|          | 1 | 0 | 1 | Parity bit is 1                              |
|          | 1 | 1 | 1 | Parity bit is 0                              |
| 6        |   |   |   | Break control: sets serial output to 0 (low) |
| 7 (DLAB) |   |   | 1 | Divisor Latch Access                         |
|          |   |   | 0 | Data access                                  |

# Line Status Register (LSR) (Read only)

| Bit | Name                | Meaning                                                   |
|-----|---------------------|-----------------------------------------------------------|
| 0   | Receiver Data       | Set to 1 when there is data for receiving                 |
| 1   | Overrun Error       | Set to 1 when a characters received is overwritten by     |
|     |                     | another one                                               |
| 2   | Parity Error        | Set to 1 when a character with a parity error is received |
| 3   | Framing Error       | Set to 1 when a received character does not have a        |
|     |                     | valid Stop bit                                            |
| 4   | Break Interrupt     | Set to 1 when the serial data input line is held in the   |
|     |                     | low level for longer than a full "word" transmission      |
| 5   | Transmitter Holding | When set, means that the UART is ready to accept a        |
|     | Register Empty      | new character for transmitting                            |
| 6   | Transmitter Empty   | When set, means that both the THR and the Transmit-       |
|     | Register            | ter Shift Register are both empty                         |
| 7   | FIFO Error          | Set to 1 when there is at least one parity error or fram- |
|     |                     | ing error or break indication in the FIFO                 |
|     |                     | Reset to 0 when the LSR is read, if there are no sub-     |
|     |                     | sequent errors in the FIFO                                |

Note Bits 0 to 4 are reset when LSR is read.

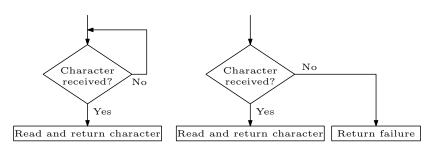
Note When using FIFO buffering the operation of these bits may be slightly different. (Check the 16550 datasheet)

#### LSR and Error Detection

- Use the LSR to find out whether there was a communications error:
  - Bit 1 Received char overwritten
  - Bit 2 Parity error
  - Bit 3 Stop bit missing

## LSR and Polled Operation

- ▶ Use the LSR to transfer data in polled mode: On reception Check bit 0, Receiver Ready
  - ► If bit set, then read character from the Receiver Buffer Register, i.e. the register at relative address 0 (ensure DLAB is reset)
  - On transmission Check bit 5, Transmitter Holding Register Empty (Why not Transmitter Ready?)


## Polled Operation: Transmission

```
#define SER LSR 5
#define SER_DATA 0
#define SER_TX_RDY (1<<5)
/* no error checking */
. . .
/* busy wait for transmitter ready */
while(!(lsr & SER_TX_RDY)) {
      ticksdelay();
      sys_inb(ser_port + SER_LSR, &lsr);
/* send character */
sys_outb(ser_port+SER_DATA, c);
```

- ▶ Busy waiting on transmission is simple
  - But what if there is some problem on the UART?



#### Polled Operation: Reception



- Use busy waiting only if you are expecting to receive a character
  - But what if there is some problem on the other end of the line?
- ► The alternative to polled operation is to use interrupts

## The Interrupt Enable Register (IER)

- Controls whether or not the UART generates interrupts on some events
- An event will generate an interrupt if the corresponding bit of the IER is set:

| Bit | Meaning                                                         |
|-----|-----------------------------------------------------------------|
| 0   | Enables the Receive Data Available Interrupt                    |
| 1   | Enables the Transmitter Holding Register Empty Interrupt        |
| 2   | Enables the Receiver Line Status Interrupt This event is gen-   |
|     | erated when there is a change in the state of bits 1 to 4, i.e. |
|     | the error bits, of the LSR                                      |
| 3   | Enables the MODEM Status Interrupt                              |

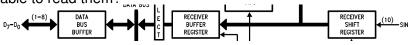
Note You can safely ignore the MODEM Status Interrupts in Lab Assignment 7

## The Interrupt Identification Register (IIR)

- Records the source of interrupts
- ► The UART prioritizes interrupts in 4 levels:
  - 1. Receiver Line Status, i.e. receiver error interrupts
  - 2. Received Data Ready, i.e. received char interrupt
  - Transmitter Holding Register Empty, i.e transmitter ready interrupt
  - 4. Modem status
- When the IIR is read, the UART freezes all interrupts and indicates the highest priority pending interrupt
- ► The meaning of the bits in the IIR is as follows:

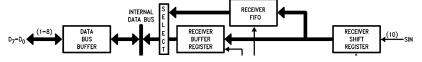
| Bit   |   |   |   | Meaning                                   |
|-------|---|---|---|-------------------------------------------|
| 0     |   |   |   | If set, no interrupt is pending           |
| 3,2,1 |   |   |   | Interrupt pending, prioritized as follows |
|       | 0 | 1 | 1 | Receiver Line Status                      |
|       | 0 | 1 | 0 | Reived Data Available                     |
|       | 1 | 1 | 0 | Character Timeout (FIFO), discussed be-   |
|       |   |   |   | low                                       |
|       | 0 | 0 | 1 | Transmitter Holding Register Empty        |
|       | 0 | 0 | 0 | Modem Status                              |




#### Interrupt Handling

- ► The original PIC architecture supports only 15 IRQ lines (APIC has no such limitation).
- ▶ To overcome this, there is a need for sharing IRQs:
  - Within a (device) controller
  - Among (device) controllers

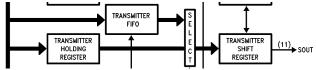
```
void ser_ih() {
    sys_inb(ser_port + SER_IIR, &iir);
    if ( iir & SER_INT_PEND ) {
        switch( iir & INT_ID ) {
        case SER RX INT:
            ... /* read received character */
        case SER TX INT:
            ... /* put character to sent */
        case SER_RX_ERR:
            ... /* notify upper level */
        case SER_XXXX:
            ... /* depends on XXX */
```


#### Buffering

Problem What if characters arrive faster than the program is able to read them?



- This problem occurs more frequently in polled operation
- ▶ In interrupt-driven operation this is not so common, but


Solution Use buffering on device



 For compatibility reasons (legacy programs), the FIFO is disabled by default

#### **UART FIFO**

- This is a HW buffer in the UART
  - Need to enable them on the FIFO Control Register (FCR)
- The IH should read all the characters available in the FIFO
  - Reduces the number of interrupts
  - Reduces further the likelihood that a character will be lost
- The UART also has a FIFO for transmission



- Reduces the number of interrupts
- Allows for faster communication, reduces idle time between chars to the minimum
- The size of both FIFOs is equal, but depends on the particular chip (16 bytes and 64 bytes are common)

## **UART FIFO Control Register (FCR)**

|     |   |   | , ,                                                         |
|-----|---|---|-------------------------------------------------------------|
| Bit |   |   | Meaning                                                     |
| 0   |   |   | Set to 1 to enable both FIFOs                               |
| 1   |   |   | Set to 1 to clear all bytes in RCVR FIFO. Self-clearing.    |
| 2   |   |   | Set to 1 to clear all bytes in the XMIT FIFO. Self-clearing |
| 3   |   |   | Not relevant for Lab 7                                      |
| 4   |   |   | Reserved for future use                                     |
| 5   |   |   | Enable 64 byte FIFO (for 16750 only)                        |
| 7,6 |   |   | RCVR FIFO Trigger Level (Bytes)                             |
|     | 0 | 0 | 1                                                           |
|     | 0 | 1 | 4                                                           |
|     | 1 | 0 | 8                                                           |
|     | 1 | 1 | 14                                                          |

- Bits 7 and 6 allow to reduce the number of receiver ready interrupts
- ► The IIR contains also state information related to the FIFOs

| Bit | Meaning                                                     |
|-----|-------------------------------------------------------------|
| 3   | Character timeout: no characters have been removed from     |
|     | or input to the RCVR FIFO during the last 4 char. times and |
|     | there is at least 1 char in it during this time             |
| 5   | Set to 1, if 64-byte FIFO enabled (for 16750 only);         |
| 7,6 | Set to 1, if bit 0 of FCR is set                            |

## Using the FIFOs

```
#define SER_RX_RDY (1 << 0)
#define SER_DATA 0
#define SER_FCR 2 // Write only
#define SER_IIR 2 // Read only
#define SER LSR 5
sys_outb(ser_port + SER_FCR, 0x??); // Enable FIFOs
sys_inb(ser_port + SER_IIR, &iir); // Check FIFO state
void ser_ih() { // serial port ISR
    while (lsr & SER RX RDY) { // Read all characters in FIFO
        ... // check errors
        sys_inb(ser_port + SER_DATA, &c);
        ... // "process" character read
        sys_inb(ser_port + SER_LSR, &lsr);
```

Problem Reading all characters to the same variable does not make much sense. Why?

#### Solution: Queue

- ► The IH puts the characters in the queue
- ► The program reads the characters off the queue
- ▶ In Lab 7, there is no possibility of interference

```
void ser_isr() { // serial port ISR
...
  while( !queue_is_full(qptr) && lsr & SER_RX_RDY) {
          ...
}
```

Question Should we also use a queue for transmission?

## Modem Control Register (MCR)

#### Controls the interface with a MODEM

| 0     | If set, activates the Data Terminal Ready output, signaling that |
|-------|------------------------------------------------------------------|
|       | the computer is ready for communicating                          |
| 1     | If set, activates the Request to Send output, indicating that    |
|       | there are data for transmission                                  |
| 2     | If set, activates the Output 1 line                              |
| 3     | If set, activates the Output 2 line                              |
| 4     | If set, activates local loopback, which may be used for diag-    |
|       | nostic                                                           |
| 5,6,7 | Reserved                                                         |

There is a potential problem with the loop back mode:

and the four MODEM Control outputs (\_DTR, \_RTS, \_OUT1 and \_OUT2) are internally connected to the four MODEM Control inputs

if output \_OUT2 is indeed used for controlling UART interrupts on the motherboard.

 Also its is not clear here which outputs are connected to which inputs



## Modem Status Register (MSR)

Provides state information as well as state change information regarding input lines from a MODEM

| 4 | Set when the Clear To Send (_CTS) input is active. In loopback |
|---|----------------------------------------------------------------|
|   | mode, this bit is equal to the RTS bit of the MCR.             |
| 5 | Set when the Data Set Ready (_DSR) input is active. In loop-   |
|   | back mode, this bit is equal to the DTR bit of the MCR         |
| 6 | Set when the Ring Indicator _RI input is active. In loopback   |
|   | mode this bit is equal to the OUT1 bit of the MCR              |
| 7 | Set when the Data Carrier Detect _DCD is active. In loopback   |
|   | mode, this bit is equal to the OUT2 bit of the MCR             |

- ► Bits 0 to 3 provide state change information regarding these 4 inputs.
  - ► I.e., these bits are set to 1 whenever the corresponding control input from the MODEM changes state. They are cleared whenever the MCR is read

# **Further Reading**

- National Semiconductor's PC16550D Data Sheet
- ► 8250 UART Programming chapter of the Serial Programming book from Wikibooks
- Beyond Logic's, Interfacing the Serial/RS232 Port Tutorial