
Computer Labs:
C Function Call Conventions

2o MIEIC

Pedro F. Souto (pfs@fe.up.pt)

October 13, 2011

Mixed C and Assembly Programming

I The name of a function or a global variable in assembly is
the C name prefixed with an underscore

I But this is not enough, even for a function as simple as
set_timer2_freq

I Functions in assembly that are supposed to be called
from C, must adhere to the C function call convention
used by the compiler.

C Function Call Convention

I The parameters of a C function are passed in the
processor stack

I All parameters are pushed onto the stack before calling the
function

I The stack is adjusted appropriately after returning from the
function

I The function parameters are pushed onto the stack in
reverse order:

I The first parameter will be on top of the stack just before
the call

I The return value is put in AL, AX or EAX, depending on its
size

gcc and Processor Registers

In an assemby function that is called by a C function
I You can change EAX, ECX and EDX

I You must preserve EBX, ESI, EDI and EBP

All other registers must not be touched.

C Function Invocation

...

subl $24, %esp

movl b, %edx

movl a, %eax

movl %edx, 4(%esp)

movl %eax, (%esp)

call foo

movl %eax, c

...

gcc -S -O0 bar.c

int foo(int a, int b);

static int a=5, b=7, c;

void bar() {

c = foo(a,b);

}

foo:

...

ret

Function Parameter Access

foo:

pushl %ebp

movl %esp, %ebp

movl 12(%ebp), %eax

movl 8(%ebp), %edx

leal (%edx,%eax), %eax

popl %ebp

ret

gcc -S -O0 foo.c

int foo(int a, int b) {

return a + b;

}

Question What are
pushl %ebp
movl %esp, %ebp

for?
Answer The EBP is used to access the

parameters
I The compiler can generate code

with immediate offset values,
without having to worry with
changes to the ESP

I Note that functions may call
other functions.

Question Where is the ADD instruction?
Answer gcc uses the address

computation machinery to perform
some integer arithmetic via the leal
instruction

(LEA and Integer Arithmetic)

I gcc first loads the EDX and EAX registers with the
parameter values;

I Then issues a leal instruction, which assumes that the
contents of EDX is an address, and the EAX is an index,
computes the effective address and loads it to the EAX

I The net result is that the code computes the sum of the
two parameters

Functions with Local Variables

b’s value

a’s value

return addr

prev. EBP

k’s value

Push

Stack

4 bytes

EBP

ESP

i

n

c

r

.

a

d

d

r

.

foo:

pushl %ebp ; save previous ebp

movl %esp, %ebp ; initialize ebp

subl $16, %esp

; reserves 16 bytes for local variables

movl 12(%ebp), %eax ; eax <- b

movl 8(%ebp), %edx ; edx <- a

leal (%edx,%eax), %eax ; eax <- a + b

movl %eax, -4(%ebp) ; k <- a+b

movl -4(%ebp), %eax ; eax <- k

leave

; leave is equ. to movl %ebp,%esp + popl %ebp

ret

gcc -S -O0 foo.c

int foo(int a, int b) {

int k;

k = a + b;

return k;

}

Further Reading

I Calling Conventions chapter, of the X86 Disassembly
Wikibook

I IA-32 SW Developer’s Manual, Vol. 1, Ch.6: Procedure
Calls, Interrupts and Exceptions

I João Cardoso e Miguel Pimenta Monteiro, Programas com
funções escritas em C e Assembly

http://en.wikibooks.org/wiki/X86_Disassembly/Calling_Conventions
http://www3.intel.com/Assets/PDF/manual/253665.pdf
http://www3.intel.com/Assets/PDF/manual/253665.pdf
http://web.fe.up.pt/~jcard/ensino/LabC/docs/C_Assembler.pdf
http://web.fe.up.pt/~jcard/ensino/LabC/docs/C_Assembler.pdf

