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What is Minix 3

I Minix 3 is an operating system developed by Andrew
Tanenbaum and its students at the Vrije Univ. of
Amsterdam

I Version 1 dates from the mid/late 1980’s
I Version 2 dates from the mid/late 1990’s
I Version 3 dates from the mid/late 2000’s

I Linus Torvalds developed the first Linux kernel based on
the first version of Minix.

I Linux is now 20 years, and bears no resemblence to its
ancestor



What is an Operating System?

I An OS is a program that:
I Manages the resources in a computer system;
I Abstracts these resources, offering an interface that is more

convenient to use.



What is an OS?

I Actually an OS is not really a program. It comprises
Kernel Which implements the OS services
Library Which provides an API so that programs can use

the OS services
Utilities A set of “basic” programs, that allows a “user” to

use the OS services.



Access to the Kernel Services

I The kernel is linked to an application almost like a library
I However, modern computer architectures provide

mechanisms to ensure a separation between the
applications and the kernel.

I Most OS support multiple processes
I Many of them associated to different users

I Applications should not be allowed to access directly to
kernel code and data

I These mechanisms are usually:
I At least two privilege execution modes

I Priviliged (kernel) vs. non-privileged (user)
I Access to the computer resources depend on the current

execution mode
I A mechanism to change in a controlled way between these

two execution modes



Kernel-level vs. User-level space

I This allows a process address space to be partitioned in
user-level and kernel-level spaces

I The kernel level address space can be accessed only when
the processor executes in privileged mode

I The kernel level address space is shared among all
processes

I To allow for the access to kernel services, modern
architectures provide special instructions to:

I Switch to privileged execution mode;
I Transfer execution control (jump) to specific locations in the

kernel address space
I An example is the software interrupt instruction INT of the

IA-32 architecture.
I Many OSs use that instruction to implement system calls
I The system calls are the OS API



Implementação das Chamadas ao Sistema
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trap 
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I Usa instruções especiais oferecidas pelo
HW (call gates ou sw interrupts, no caso
da arquitectura IA32), que comutam
automáticamente de nível de privilégio.

I Para o programador, é como se invocasse
uma função da biblioteca de C.



ssize_t read(int fd, void *buf, size_t
count)
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Passos na Execução de read()

1, 2, 3 push dos argumentos para a stack ;
4 chamada da função read da biblioteca C;
5 inicialização do registo com o # da chamada ao

sistema;
6 mudança de modo de execução do CPU;
7 despacho para o handler apropriado;
8 execução do handler ;
9 possível retorno para a função da biblioteca C;

10 retorno da função read da biblioteca C;
11 ajuste da stack.



How is an OS/Kernel implemented?

Monolithic The whole kernel executes in a single address
space

I Usually, the kernel is developed in a modular fashion
I However, there are no mechanisms that prevent one

module from accessing the code, or even the data, of
another module

Micro-kernel The kernel is implemented as a set of modules
executing in its own address space

I A module cannot access directly data or even code of
another module



Monolithic Implementations

I Virtually all “main stream” OS use this architecture
I It is perceived as faster



Minix 3: Micro-kernel Based

I It has a very small size kernel (about 6 K lines of code,
most of it C)

I Most of the OS functionality is provided by a set of
privileged user level processes:
Services E.g. file system, process manager, VM server,

Internet server, and the ressurection server.
Device Drivers All, of them are user-level processes

Issue OS services and device drivers need to execute
instructions that are allowed only in privileged mode

I But now, they are executed at user-level



Kernel Calls

Solution The (micro-)kernel provides a set of kernel calls
I These calls allow privileged processes to execute

operations that:
I Can be executed only when running in privileged/kernel

mode;
I That are needed for them to carry out their tasks

Examples from Labs 1 and 2?
I vm_map_phys()
I sys_int86()

Note Kernel calls are (conceptually) different from system calls
I Any process can execute a system call
I Only privileged processes are allowed to execute a

kernel call
However, they use the same basic mechanism:

I An instruction that switches to privileged execution mode



Service/DD Privileges
How can we specify the privileges of a process?

I Via the /etc/system.conf
service at_wini {

io
1f0:8 # Controller 0
3f6 # Also controller 0
170:8 # Controller 1
376 # Also controller 1
;

irq
14 # Controller 0
15 # Controller 1
;

system
UMAP # 14
IRQCTL # 19
DEVIO # 21
SDEVIO # 22
VDEVIO # 23
READBIO # 35
;

pci class
1/1 # Mass storage / IDE
1/80 # Mass storage / Other (80 hex)
1/4 # Mass storage / RAID
;

};


