
Computer Labs: The Minix 3 Operating
System
2o MIEIC

Pedro F. Souto (pfs@fe.up.pt)

September 30, 2011



What is Minix 3

I Minix 3 is an operating system developed by Andrew
Tanenbaum and its students at the Vrije Univ. of
Amsterdam

I Version 1 dates from the mid/late 1980’s
I Version 2 dates from the mid/late 1990’s
I Version 3 dates from the mid/late 2000’s

I Linus Torvalds developed the first Linux kernel based on
the first version of Minix.

I Linux is now 20 years, and bears no resemblence to its
ancestor



What is an Operating System?

I An OS is a program that:
I Manages the resources in a computer system;
I Abstracts these resources, offering an interface that is more

convenient to use.



What is an OS?

I Actually an OS is not really a program. It comprises
Kernel Which implements the OS services
Library Which provides an API so that programs can use

the OS services
Utilities A set of “basic” programs, that allows a “user” to

use the OS services.



Access to the Kernel Services

I The kernel is linked to an application almost like a library
I However, modern computer architectures provide

mechanisms to ensure a separation between the
applications and the kernel.

I Most OS support multiple processes
I Many of them associated to different users

I Applications should not be allowed to access directly to
kernel code and data

I These mechanisms are usually:
I At least two privilege execution modes

I Priviliged (kernel) vs. non-privileged (user)
I Access to the computer resources depend on the current

execution mode
I A mechanism to change in a controlled way between these

two execution modes



Kernel-level vs. User-level space

I This allows a process address space to be partitioned in
user-level and kernel-level spaces

I The kernel level address space can be accessed only when
the processor executes in privileged mode

I The kernel level address space is shared among all
processes

I To allow for the access to kernel services, modern
architectures provide special instructions to:

I Switch to privileged execution mode;
I Transfer execution control (jump) to specific locations in the

kernel address space
I An example is the software interrupt instruction INT of the

IA-32 architecture.
I Many OSs use that instruction to implement system calls
I The system calls are the OS API



Implementação das Chamadas ao Sistema

ordinary
return

ordinary
call

trap 
return

user program

C library function

system call

trap

user space

kernel space

I Usa instruções especiais oferecidas pelo
HW (call gates ou sw interrupts, no caso
da arquitectura IA32), que comutam
automáticamente de nível de privilégio.

I Para o programador, é como se invocasse
uma função da biblioteca de C.



ssize_t read(int fd, void *buf, size_t
count)

Return to caller

4
10

6

0

9

7 8

3
2
1

11

Dispatch
Sys call
handler

Address
0xFFFFFFFF

User space

Kernel space
 (Operating system)

Library
procedure
read

User program
calling read

Trap to the kernel
Put code for read in register

Increment SP
Call read
Push fd
Push &buffer
Push nbytes

5



Passos na Execução de read()

1, 2, 3 push dos argumentos para a stack ;
4 chamada da função read da biblioteca C;
5 inicialização do registo com o # da chamada ao

sistema;
6 mudança de modo de execução do CPU;
7 despacho para o handler apropriado;
8 execução do handler ;
9 possível retorno para a função da biblioteca C;

10 retorno da função read da biblioteca C;
11 ajuste da stack.



How is an OS/Kernel implemented?

Monolithic The whole kernel executes in a single address
space

I Usually, the kernel is developed in a modular fashion
I However, there are no mechanisms that prevent one

module from accessing the code, or even the data, of
another module

Micro-kernel The kernel is implemented as a set of modules
executing in its own address space

I A module cannot access directly data or even code of
another module



Monolithic Implementations

I Virtually all “main stream” OS use this architecture
I It is perceived as faster



Minix 3: Micro-kernel Based

I It has a very small size kernel (about 6 K lines of code,
most of it C)

I Most of the OS functionality is provided by a set of
privileged user level processes:
Services E.g. file system, process manager, VM server,

Internet server, and the ressurection server.
Device Drivers All, of them are user-level processes

Issue OS services and device drivers need to execute
instructions that are allowed only in privileged mode

I But now, they are executed at user-level



Kernel Calls

Solution The (micro-)kernel provides a set of kernel calls
I These calls allow privileged processes to execute

operations that:
I Can be executed only when running in privileged/kernel

mode;
I That are needed for them to carry out their tasks

Examples from Labs 1 and 2?
I vm_map_phys()
I sys_int86()

Note Kernel calls are (conceptually) different from system calls
I Any process can execute a system call
I Only privileged processes are allowed to execute a

kernel call
However, they use the same basic mechanism:

I An instruction that switches to privileged execution mode



Service/DD Privileges
How can we specify the privileges of a process?

I Via the /etc/system.conf
service at_wini {

io
1f0:8 # Controller 0
3f6 # Also controller 0
170:8 # Controller 1
376 # Also controller 1
;

irq
14 # Controller 0
15 # Controller 1
;

system
UMAP # 14
IRQCTL # 19
DEVIO # 21
SDEVIO # 22
VDEVIO # 23
READBIO # 35
;

pci class
1/1 # Mass storage / IDE
1/80 # Mass storage / Other (80 hex)
1/4 # Mass storage / RAID
;

};


