Computer Labs: The Minix 3 Operating
System
2° MIEIC

Pedro F. Souto (pfs@fe.up.pt)

September 30, 2011

What is Minix 3

» Minix 3 is an operating system developed by Andrew
Tanenbaum and its students at the Vrije Univ. of
Amsterdam

» Version 1 dates from the mid/late 1980’s
» Version 2 dates from the mid/late 1990’s
» Version 3 dates from the mid/late 2000’s

» Linus Torvalds developed the first Linux kernel based on
the first version of Minix.
» Linux is now 20 years, and bears no resemblence to its
ancestor

What is an Operating System?

» An OS is a program that:
» Manages the resources in a computer system;
» Abstracts these resources, offering an interface that is more
convenient to use.

What is an OS?

» Actually an OS is not really a program. It comprises
Kernel Which implements the OS services
Library Which provides an API so that programs can use
the OS services

Utilities A set of “basic” programs, that allows a “user” to
use the OS services.

Access to the Kernel Services

» The kernel is linked to an application almost like a library

» However, modern computer architectures provide
mechanisms to ensure a separation between the
applications and the kernel.

» Most OS support multiple processes
» Many of them associated to different users

» Applications should not be allowed to access directly to
kernel code and data
» These mechanisms are usually:
» At least two privilege execution modes
» Priviliged (kernel) vs. non-privileged (user)

» Access to the computer resources depend on the current
execution mode

» A mechanism to change in a controlled way between these
two execution modes

Kernel-level vs. User-level space

» This allows a process address space to be partitioned in
user-level and kernel-level spaces

» The kernel level address space can be accessed only when
the processor executes in privileged mode

» The kernel level address space is shared among all
processes

» To allow for the access to kernel services, modern
architectures provide special instructions to:
» Switch to privileged execution mode;
» Transfer execution control (jump) to specific locations in the
kernel address space

» An example is the software interrupt instruction INT of the
IA-32 architecture.

» Many OSs use that instruction to implement system calls
» The system calls are the OS API

Implementagdo das Chamadas ao Sistema

user space
user program
ordinary ordinary |, sa instrugdes especiais oferecidas pelo
call return)
HW (call gates ou sw interrupts, no caso
C library function da arquitectura 1A32), que comutam
trap trap automaticamente de nivel de privilégio.
| |™wum | » Parao programador, é como se invocasse
uma fungao da biblioteca de C.
system call
kernel space

ssize_t read(int fd, wvoid *buf, size_t

count)

Address
OXFFFFFFFF
Return to caller Library
Trap to the kernel procedure
5| Put code for read in register read
10,
4
User space #
Increment SP 11
r Call read
3| Pushfd User program
2| Push &buffer calling read
1| Push nbytes
6 9
(-
* 7
Kernel space) 7 8 | syscall
(Operating system) Dlfpetiel % handler

Passos na Execucao de read ()

1, 2, 3 push dos argumentos para a stack;
4 chamada da funcédo read da biblioteca C;

5 inicializag&o do registo com o # da chamada ao
sistema;

6 mudanca de modo de execucao do CPU;

7 despacho para o handler apropriado;

8 execucao do handler;

9 possivel retorno para a fungéo da biblioteca C;
10 retorno da funcdo read da biblioteca C;
11 ajuste da stack.

How is an OS/Kernel implemented?

Monolithic The whole kernel executes in a single address
space
» Usually, the kernel is developed in a modular fashion
» However, there are no mechanisms that prevent one
module from accessing the code, or even the data, of
another module

Micro-kernel The kernel is implemented as a set of modules
executing in its own address space
» A module cannot access directly data or even code of
another module

Monolithic Implementations

» Virtually all “main stream” OS use this architecture
» |t is perceived as faster

Minix 3: Micro-kernel Based

» It has a very small size kernel (about 6 K lines of code,
most of it C)
» Most of the OS functionality is provided by a set of
privileged user level processes:
Services E.g. file system, process manager, VM server,
Internet server, and the ressurection server.
Device Drivers All, of them are user-level processes

Issue OS services and device drivers need to execute
instructions that are allowed only in privileged mode

» But now, they are executed at user-level

Kernel Calls

Solution The (micro-)kernel provides a set of kernel calls
» These calls allow privileged processes to execute

operations that:
» Can be executed only when running in privileged/kernel

mode;
» That are needed for them to carry out their tasks

Examples from Labs 1 and 27
» vm_map_phys ()
» sys_int86 ()
Note Kernel calls are (conceptually) different from system calls

» Any process can execute a system call
» Only privileged processes are allowed to execute a

kernel call
However, they use the same basic mechanism:

» An instruction that switches to privileged execution mode

Service/DD Privileges

How can we specify the privileges of a process?
» Viathe /etc/system.conf

service at_wini {

io
1f0:8 # Controller 0
3f6 # Also controller 0
170:8 # Controller 1
376 # Also controller 1
7
irg
14 # Controller 0
15 # Controller 1
system
UMAP # 14
IRQCTL # 19
DEVIO # 21
SDEVIO # 22
VDEVIO # 23
READBIO # 35

7
pci clase

