
Computer Labs: Make
2o MIEIC

Pedro F. Souto (pfs@fe.up.pt)

October 15, 2010

Compilation Dependencies

I Even relatively small programs comprise several source
and header files

I Medium to large projects may be comprised of hundreds or
even thousands source and header files.

Advantages
I Allows for easier structuring of the code
I Makes the code easier to manage
I Facilitates multi-programmer development easier
I May make compilation faster

Problem Realizing the last advantage may not be as easy as it
appears.

Compilation of a C Program
foo.c

foo.h

.c foo.s foo.o foo

gcc -E gcc -S gcc -c gcc

Preprocessing Stage The C pre-processor processes its
directives in the source and header files: mostly text
substitution

Compiling Stage The C source code is converted to an
assembly file by the compiler

Assembling Stage The assembly code is converted to
relocatable object code, which is stored in a .o file

Linking Stage The object code file is linked with libraries that
contain functions like printf(), generating an executable
program.

Compilation with Several C Files
grd2.c

vid.h

vid.c

.c vid.s vid.o

grd2

.c grd2.s grd2.o

gcc -E gcc -S gcc -c

gcc

gcc -E gcc -S gcc -c

I Even in the case of Lab 2 makes sense to divide the
source code into several source files

I Compilation of grd2.o and vid.o can be performed as
two separate steps:
gcc -Wall -c grd2.c
gcc -Wall -c vid.c

I The executable program may be generated afterwards by
linking the two object files with the C library:
gcc -Wall grd2.o vid.o -o grd2

Dependency Graphs

grd2.c

vid.h

vid.c

vid.o

grd2

grd2.o

I Captures de dependency between files used in the
generation of a program

I Change in a file in a dependency graph, requires
generating all the files that depend on it, i.e. all the files in
the paths from that file to the executable

I The make utility helps automating that process

Make and Makefiles

I Make generates the dependency from a makefile
grade2.exe: grade2.o video-graphics.o

gcc -Wall grade2.o video-graphics.o -o grade2.exe

grade2.o: grade2.c utypes.h video-graphics.h
gcc -Wall -c grade2.c

video-graphics.o: video-graphics.c utypes.h video-graphics.h
gcc -Wall -c video-graphics.c

I The makefile specifies also how a file may be generated
from the files on which it depends

I Make compares the date of the last modification of a file
with that of the files that depend on it

I If that date is more recent, it invokes the appropriate
command to rebuild the files that depend on it

I The whole process starts from the bottom of the
dependency graph and progresses upward until it reaches
the executable

The Makefile
I The makefile consists of a set of rules
I Each rule expresses a dependency in the dependency

graph
I I.e., the files on which a file in a dependency graph depends
I How a given file may be (re)built from the files on which it

depends
I The format of a make rule is as follows:

target: <list of files>
<command line 0>
...
<command line n>

where:
target is a node in the dependency file
<list of files> is a space separated list of the files

on which the target depends. Also called prerequisites.
command line i command that must be executed to

rebuild the target. Also called recipe
I Each command line must start with a tab

Example

grd2.c vid.h vid.c

vid.o

grd2

grd2.o

grd2: grd2.o vid.o

gcc -Wall grd2.o vid.o -o grd2

grd2.o: grd2.c vid.h

gcc -Wall grd2.c -o grd2.o

vid.o: vid.c vid.h

gcc -Wall vid.c -o vid.o

Invoking Make

make
1. Searches for files with names makefile or Makefile

in current directory, in that order
I And reads the one it finds first

2. Processes the first rule in the file read
I Usually, this rule has the executable as the target

make <target> Processes the rule for the specified target
make -f <makefile filename> Reads in the makefile

with the specified name

GNU make Variables or Macros

I make supports the definition of variables, or macros
I make variable definition is similar to #define directives of

the C preprocessor:
I A variable is defined once, and may be used at different

points
I make replaces a “variable” name by the text used in its

definition
I Common use of make variables include:

I Names of tools such as compiler, assembler or linker
I Names of options to use with those utilities, including

directories to be searched for
I Lists of filenames to be used in targets

I The use of variables or macros makes it easier to manage
and port a makefile

GNU make Variables or Macros: Examples

CC = gcc
CFLAGS = -Wall
OBJS = grade2.o video-graphics.o
HDRS = utypes.h video-graphics.h
EXEC = grade2.exe

$(EXEC): $(OBJS)
$(CC) $(CFLAGS) $(OBJS) -o $(EXEC)

grade2.o: grade2.c $(HDRS)
$(CC) $(CFLAGS) -c grade2.c

video-graphics.o: video-graphics.c $(HDRS)
$(CC) $(CFLAGS) -c video-graphics.c

Special/Automatic make Variables

CC The C compiler filename.
CFLAGS Special options that are added to built-in C rule
$@ Full name of the current target
$ˆ Prerequisites
$? Prerequisites that are newer than the target
$< The first prerequisite

Special/Automatic make Variables: Example

CC = gcc
CFLAGS = -Wall
OBJS = grade2.o video-graphics.o
HDRS = utypes.h video-graphics.h
EXEC = grade2.exe

$(EXEC): $(OBJS)
$(CC) $(CFLAGS) $(OBJS) -o $@

grade2.o: grade2.c $(HDRS)
$(CC) $(CFLAGS) -c $<

video-graphics.o: video-graphics.c $(HDRS)
$(CC) $(CFLAGS) -c $<

Predefined/Implicit Rules

I make has some built-in rules that simplify the writing of
makefiles

I These rules depend on the language. For the C language:
n.o is made automatically from n.c with a recipe of the
form $(CC) $(CPPFLAGS) $(CFLAGS) -c

I Other relevant rules supporte by Gnu make are rules for
assembling and linking

Pattern Rules

I Pattern rules use the character % on the target for pattern
matching

CC = gcc
CFLAGS = -Wall
OBJS = grade2.o video-graphics.o
XHDRS = utypes.h
EXEC = grade2.exe

$(EXEC): $(OBJS)
$(CC) $(CFLAGS) $(OBJS) -o $@

%.o: %.c %.h $(XHDRS)
$(CC) $(CFLAGS) -c $<

Phony Targets

I A phony target is a target that is not the name of a file
I It is just a name for a recipe to be executed
I Thus its prerequisites are empty

I If a file with the name of a phony target ever exists, the
application of implicit rules will prevent the recipe from
executing

I The .PHONY target tells make that the corresponding rule
should be handled specially

.PHONY clean
clean:

rm *.o *~

Further Reading

I Ben Yoshino, Make - a tutorial
I Byron Weber Becker A GNU Make Tutorial
I GNU ’make’ – the ultimate reference for GNU’s make

http://www.eng.hawaii.edu/Tutor/Make/
http://www.student.cs.uwaterloo.ca/~isg/res/unix/make/index
http://www.gnu.org/software/make/manual/make.html

